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1. leptons in the Standard Model

2. massive neutrinos = Beyond the Standard Model!

• add light singlet νRs to SM, Dirac mass partners of νL.

• add non-renorm LNV operator [ℓH][ℓH] to LSM

3. (mν observables and “mechanisms” ( 6= models))

4. not worry about origin of mν; assume leptonic NP with ΛNP
>∼ mW , describable by Leff :

(only SM externallegs = neglect possibility of light νR)

Leff ≃ SM +maj.mass + 4ferm. +maj.mag.mo. +NSνI + ...

≃ LSM +
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Outline (again)

1. leptons in the Standard Model

2. massive neutrinos = Beyond the Standard Model!

3. “mechanisms” ( 6= model) for small masses

4. dim 6 in Leff : flavour changing interactions of the charged leptons (FCNC due to NP)

• where to look?

– under the lamppost: where are the strong exptal/observational limits?

– from the PDB to bounds on operator coefficients

• pheno expectations? but there is no MFV??

• bounds on your favourite model

– tree level: (Q̄ΓQ)(L̄ΓL) ↔ leptoquarks/RPV SUSY

– loops: only charged leptons: your favourite neutrino mass mechanism

5. dim 7 and 8 neutrino operators



“Under the lamppost” (= in the PDB): what are good bounds on dim 6?

BR(KL → µē) < 4.7 × 10−12 , BR(Bd → µµ̄) <∼ 10−8

BR(K+ → π+νν̄, π+l+l−)

BR(K+ → νµ̄π0)
<

1.7 × 10−10, 5 × 10−10

5.1 × 10−2
l = e, µ



“Under the lamppost” (= in the PDB): what are good bounds on dim 6?
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“Under the lamppost” (= in the PDB): what are good bounds on dim 6?

BR(KL → µē) < 4.7 × 10−12 , BR(Bd → µµ̄) <∼ 10−8

BR(K+ → π+νν̄, π+l+l−)

BR(K+ → νµ̄π0)
<

1.7 × 10−10, 5 × 10−10

5.1 × 10−2
l = e, µ

BR(K+ → µ+µ+π−) < 3 × 10−9 LNV !

Γ(µAu → eAu)

Γ(µAu → N ′ν)
< 7 × 10−13 Γ(µTi → eTi)

Γ(µTi → N ′ν)
< 4 × 10−12 ZAu = 79, ZTi = 22

BR(τ → 3ℓ) < 2 − 4 × 10
−8

BR(τ → µγ) < 4 × 10−8 , BR(µ → eγ) < 1.2 × 10−11

But: small BR ⇔ LFV NP suppressed wrt SM (so appears less good if SM suppressed by m2
i , θ

2)

maybe want “absolute” bounds on the operator coefficients? ...a little work to do... Easier than

quarks! At most 2 q legs at dim 6.



bounds on operator coefficients: τ → ℓγ

Straightforward to extract bounds on operator coefficients from radiative decays, because are

mediated by (only a few) dipole operators:

Oij
eB = ℓiσ

µνeRjHBµν, Oij
eW = ℓiσ

µντ IeRjHW
I
µν.
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Oij
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µνeRjHBµν, Oij
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I
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Operator is chirality flip: ∝ (Yukawa)2n+1. So explicit a power of mj. ( [A] = 1/m2) .

Can calculate :

Γ(τ → µγ)

Γ(τ → µνν̄)
=
e2m5

τ(|AL|2 + |AR|2)
16π

192π3

G2
Fm

5
τ

=
48π3α
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“
A

2
L + A

2
R

”
<

4.4 × 10−8

.17

!! strong bound (A2
L + A2

R)/G2
F
<∼ 10−9 !!

1. Not pay Yukawa for chirality flip: the dominant weak decay is via a dim 6 op, and mj is the

energy scale of the decay, so Γ ∝ G2
Fm

5
j .

2. Radiative decay pays a factor e2, but enhanced wrt usual weak decay by (2 body phase

space)/(3ody phase space) ∼ 2π3.



2Q2L operators

A list of possible operators (from Flav@LHC Ybook )

Oijkl
(1)ℓq = (ℓiγ

µ
ℓj)(qkγµql), Oijkl

(3)ℓq = (ℓiτ
I
γ
µ
ℓj)(qkτ

I
γµql),

Oijkl
ed = (eiγ

µ
PRej)(dkγµPRdl), Oijkl

eu = (eiγ
µ
PRej)(ukγµPRul),

Oijkl
ℓu = (ℓiul)(ukℓj) = −1

2
(ℓiγ

µ
ℓj)(ukγµPRul)

Oijkl
ℓd = (ℓidl)(dkℓj) = −1

2
(ℓiγ

µℓj)(dkγµPRdl)

Oijkl
ℓqS = (ℓiej)(qkul) Oijkl

qde = (ℓiej)(dkql)

(operator normalisation à la Flavour@LHC Workshop Report de Mangano et al;

Eur.Phys.J.C57:13-182,2008. BUT N.B., typos in arXiv:0801.1826)



2Q2L operators

A list of possible operators (from Flav@LHC Ybook )

Oijkl
(1)ℓq

= (ℓiγ
µℓj)(qkγµql), Oijkl

(3)ℓq
= (ℓiτ

Iγµℓj)(qkτ
Iγµql),
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Oijkl
ℓqS = (ℓiej)(qkul) Oijkl

qde = (ℓiej)(dkql)

Put in L as (aim to get F-rule 4GF/
√

2 ↔ CX)
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1/2 to compensate +h.c. for hermitian ops. -ve sign to ressemble Fermi



Bounds on 2Q, 2L operator coefficients from leptonic meson decays

In the presence of SM gauge invariant operators(flavours i, j, k, n summed)

−ǫijkn(1)ℓq

4GF√
2

(ℓ̄
i
γ
µ
PLℓ

j
)(q̄

k
γµPLq

n
) −

n
ǫ
ijkn
qde

4GF√
2

(ē
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Bounds on 2Q, 2L operator coefficients from leptonic meson decays

In the presence of SM gauge invariant operators(flavours i, j, k, n summed)
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The decay rate of a pseudoscalar meson M(q̄kdn) is

Γ
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=
;

where its axial vector and pseudoscalar current matrix elements that contribute:

eAP µ
=

1

2
〈0|qγµγ5

q|M〉 =
fMP

µ

2
eP =

1

2
〈0|qγ5

q|M〉 =
fMmM

2

mM

mk +mn

.

P µ is the momentum of the meson, and k is the magnitude of the lepton 3-momentum in the
center-of-mass frame:

k2 =
1

4m2
M

h“
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M −

`
mi +mj

´2”“
m2
M −

`
mi −mj

´2”i



Bounds from KL → µē

A list of possible operators (maybe complete; see Flav@LHC Ybook ) (X = L,R )

ǫµesdLq
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4GF√
2

(µ̄PLe)(d̄PRs)

Obtain that
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µeds
ℓd − ǫ
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µeds
ℓq

˛̨
˛
2

+
1

2

˛̨
˛ǫµesded + ǫµedsed − ǫµesdeq − ǫµedseq
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From the exptal bound on the Branching Ratio, get a bound:

1. BR sets bound on linear combo of coefficient of 〈0|qγµγ5q|M〉 and 〈0|qγ5q|M〉
2. but each coefficient is linear combo of coefficients of different SM gauge invar operators, for

fermions of various chiralities.

3. and anyway, your NP maybe didn’t give those nice current current V ±A operators, maybe you

had to do Fiertz to get that form,so operator coefficients are linear combos of NP coefficients.

repeat for all LFV rates in PDB... WELCOME TO THE ZOO !!

Brute force extraction of bounds on NP operator coefficients from data is a mess....

⇒ set bounds on operator coefficients by turning on one operator at a time

(but remember this misses possible cancellations ↔ depends on the choice of operator basis.)
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Expectations? MFV(?L?)

• More clever approach: identify operators “expected” to dominate, and set bounds on their

coefficients.

Which operators are these?

• Among quarks, “expect” MFV-like pattern in NP operator coefficients...can one introduce MFV

for leptons???

– If Dirac neutrino masses, MFV for leptons = MFV for quarks, yν <∼ 10−11, and never see

anything.

– If Majorana neutrino masses, arise from a non-renorm operator, and non-renorm operator

coefficients

1. are combinations of spurions; should not use coeff of dim 5 op as a spurion?

2. are dimensionful — MFV is about flavour pattern. Scale out the mass dimensions, and are

left not knowing scale of the couplings.

• ⇒ no bottom-up pheno defn of MFVL.

(Several models in the literature called MFVL).



Summary

extracting bounds on operator coefficients from data is a can of worms = not very enlightening

(even though more doable than quark sector)

A la différence des quarks, no SM LFV

⇒ no MFV-like expectations for an SM pattern of LFV

beautiful machinery of EFT not required : QED running :GeV → mW is small, not need EW

running : mW → ΛNP if want ΛNP ∼ TeV.

A la différence des quarks, know there is NP

Dans le meilleur des mondes possibles: bottom-up reconstruction of NP from the coefficients {CX}

In practise: ...models. (skip EFT, just compute rates in your favourite model).



Models: a leptoquark

Consider, for instance, a singlet scalar “leptoquark” ēD, with interactions:

leptoquark L in

Buchmuller, Wyler NPB 1986ēDλqcLǫℓ = [λ]
lq ēD(ucLqel − dcLqνl)

put qL in the mass basis of d, s, b



Models: a leptoquark

Consider, for instance, a singlet scalar “leptoquark” ēD, with interactions:

leptoquark L in

Buchmuller, Wyler NPB 1986ēDλqcLǫℓ = [λ]
lq ēD(ucLqel − dcLqνl)

put qL in the mass basis of d, s, b

Obtain such interactions, if include the lepton number violating λ′ coupling in an R-parity

violating addition to the MSSM superpotential:

WRPV = λ
′k
lqLlQqD̄k → λ

′k
lq
ēDk(ucLqel − dcLqνl) + ...

If all doublet squarks and two generations of singlets are negligeably heavy, then only include ēD
exchange which gives effective four-fermion vertex:

νi

s νj

d
ēD ⇒ νi

s νj

d



Models: a leptoquark, and K+
→ π+νν̄

νi

s νj

d
ēD ⇒ νi

s νj

d

which can be re-expressed as a (V −A) product of quark and lepton currents:

λ
′∗
isλ

′
jd

m2
D̄

(scPLνi)(νjPRd
c) = −

λ
′∗
isλ

′
jd

2m2
D̄

(sγρPLd)(νiγρPLνj) =
4GF√

2
εjisd(sγρPLd)(νiγρPLνj)

which can contribute to K+ → π+νν̄.

ν flavour undetected. NP with i = j interferes with the SM, for i 6= j, | NP amplitude|2 is

bounded.

( measurement is ∼ 2× the SM expectation, ⇒ bounds of same order):

|εjisd| <∼ 10−5

(recall λ′
ib ∼ 10−3 − 10−4 to generate [mν]. )



Some Signs and Fiertz Transformations

Relative sign between scalar/vector mediated 4-f ops:

i

p2 −m2
→ −i

mL
2

and
−igµν

p2 −m2
→ +igµν

mL
2

Useful identities for transforming 4-fermion operators into a form ∼ (V − A)(V − A) of weak

interactions (allows to normalise NP rates to SM rates). Simplest in 2comp notn!

(acPLb) = (bcPLa) [χψ = ψχ]

(āPLb)
†
= (b̄PRa) [(ψχ)

†
= ψ̄χ̄]

(āγ
µ
Pb)

†
= (b̄γ

µ
Pa) [(χσψ̄)

†
= ψσχ̄]

(acγµPL,Rb
c) = −(b̄γµPR,La) [χσψ̄ = −ψ̄σ̄χ]

And Fiertz (↔ SU(N) identity: TAαβT
A
γδ = − 1

2Nδαβδγδ + 1
2δαδδγβ, for SU(2) (T = σ/2)

σiαβσ
i
γδ + δαβδγδ = +2δαδδγβ) :

(āPLb)(c̄PRd) = −1

2
(āγµPRd)(c̄γµPLb)

(āγµPL,Rb)(c̄γµPL,Rd) = (āγµPL,Rd)(c̄γµPL,Rb)



µ→ eγ in presence of mν

xxµ−

mµ

e−

γ

m2
ν

νi

W −

Gives multiplicative GIM suppression (no log... :( ...ν not couple to γ ...)

mµAL ∼ mµGF

e

16π2

Uµim
2
ν,iU

∗
ei

m2
W

⇒ BR(µ → eγ) ≃
„
mν

mW

«4

Exercise: compute (unitary gauge), AL in the SM with massive neutrinos



A detectable µ→ eγ rate: the SUSY See-Saw
sparticle loops :

xµ−

e−

γ

[m2
ν̃]µe

ν̃µ ν̃e

χ−

+

x

µ−

e−

γ

[m2
ℓ̃
]µe

µ̃
ẽ

χ0

+...

mµAL ∼ mµ

m2
SUSY

g2e

16π

[m2
ν̃]µe

m2
SUSY

+ ... SUSY param dep
Graesser Thomas 2001

suppressed by LFV soft masses, rather than mν:

BR(µ → eγ) < 10−11 ⇒ [m2
ν̃]µe

m2
SUSY

<∼ 2 × 10−3

(in the mass insertion approximation)



LFV slepton masses from RGE — not suppressed by M−1

• suppose soft scalar masses universal at MGUT : ∼ m2
oI

• Renormalisation Group running MGUT → M3,2,1 will induce flavour violation at the weak scale

in slepton masses:

ν̃i ν̃j

νR

h̃

Yν Yν

h
m2
ν̃

i
ij

≃ (diag part) − 3m2
0 + A2

0

8π2
(Y†

ν)ik(Yν)kj log
MGUT

Mk

log GIM! (well, in the νR Majorana masses)



Detectable τ → µγ : put LFV “by hand”

Consider “type III” 2HDM = allow flavour changing interaction ∼ κτµφτ̄µ for neutral Higgses

φ = h,H,A. (Rappelle: (the MSSM is type II at tree: d and e couple to Hd, u couple to Hu.

but at one loop, the MSSM is type III — loop diagrams connect fermions to the (wrong Higgs)†)

x

τ− µ−

γ

yτ κτµ

φ

mτ

τ−

mτAX ∼ eκτµyτ

16π2

mτ

m2
φ

κτµτ− µ−

γ

t

γ φ

mtx

mτAX ∼ e3κτµyt

(16π2)2

mt

m2
φ

mτAX|1 loop

mτAX|2loop

∼ 16π2yτmτ

Ncytmt

< 1 (modulo
1

tan β
factors in yt)

moral: 2 loop can be relevant when enters top and QCD



Trying to keep up with Uli: hierarchical Zs and µ→ eγ

Recall that, in principle,

1. write leptonic Lagrangian:

iℓa[ZℓZ
†
ℓ ]
abD/ ℓb + iea[ZeZ

†
e]
abD/ eb + iea[Ỹ ]ba](ℓbH) + h.c.

2. diagonalise ZZ†

3. rotate/renormalise SM fields to get canonical kinetic terms iψ
a
D/ ψa

4. diagonalise Ye = Z−1
ℓ Ỹ ]Z−1

e by unitary transformations in ℓ and e flavour spaces.

In the renormalisable SM, can always redefine fields to obtain in herarchy in the Yukawas or the Zs.

Observable is the “relative” hierarchy ∼ Z−1Ỹ Z−1.
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Trying to keep up with Uli: hierarchical Zs and µ→ eγ

Recall that, in principle,

1. write leptonic Lagrangian:

iℓa[ZℓZ
†
ℓ ]
abD/ ℓb + iea[ZeZ

†
e]
abD/ eb + iea[Ỹ ]ba(ℓbH) + h.c.

2. diagonalise ZZ†

3. rotate/renormalise SM fields to get canonical kinetic terms iψ
a
D/ ψa

4. diagonalise Ye = Z−1
ℓ Ỹ Z−1

e by unitary transformations in ℓ and e flavour spaces.

Usually, you did this before you added the higher dim operators that parametrise NP. And you had

a “flavour problem”. Which you solved in quark sector with MFV.

Suppose instead:

1. you put the NP operators before making kinetic terms canonical

2. you allow Ỹ and CX to have O(1) coefficients, for any flavour combinations

3. you put the observed yukawa hierarchy in the eigenvalues of Z−1:

1

zeL
≃ √

ye

and then you renormalise to obtain canonical kin terms, and diagonalise Yukawas.

⇒ the Yukawa hierarchy is imposed on all higher dimensional operators



What as this got to do with Uli?

This is the 4-d, EFT relative of wavefn overlaps in extra dims, that gives “natural” suppression of

flavour violation.

So the recipe is:

1. write leptonic Lagrangian:

iℓa[ZℓZ
†
ℓ ]
ab
D/ ℓb + iea[ZeZ

†
e]
ab
D/ eb + iea[Ỹ ]

ba
(ℓbH) + h.c.+

X CX

Λn
OX

2. Data tells you there is a relative hierachy between Zs and Y s. Put it in Z: allow Ỹ and CX to

have O(1) coefficients, and put the hierarchy in the eigenvalues of Z−1:

1

zeR
≃ 1

zeL
≃ √

ye
1

zµR
≃ 1

zµL
≃ √

yµ

3. diagonalise ZZ†

4. rotate/renormalise SM fields to get canonical kinetic terms iψ
a
D/ ψa

5. diagonalise Y = Z−1
L Ỹ Z−1

R by unitary transformations in ℓ and e flavour spaces.

6. Suppose that
C

Λ2
<∼

g2

16π2(3mZ)2
∼ 1

(10TeV )2

and discover that your only (mild) quark flavour problem is ǫK.



Does it work

From ǫK, get bound on coeff CLR2/(10TeV )2 of (dRsL)(dLsR) :

|C21
LR2| ∼

1

z
(2)
q z

(1)
q z

(2)
d z

(1)
d

< 0.004 |V ∗
tsVtd|

2 ≈ 0.6 × 10
−9

whereas expected:
1

|z(2)
q z

(1)
q z

(2)
d z

(1)
d |

∼ mdms

v2
≈ 1 × 10

−8
.

... what is your defn of 1? ...need [O(1) factors]4 <∼ 1/20

(simple Froggart Nielson, with 1/z
(i)
A

∼ ǫQ
i
A,

C
ij
AB

→ ǫ
|QiA−Qj

B
|

Hierarchies give:

C
ij
AB

→
“
Z−1
A CABZ

−1
B

”ij
∼ 1

z
(i)
A
z
(j)
B

(A,B ∈ {SM fermions}, i, j flavour)

a bit more suppressed...



Back to µ→ eγ

Expect large rates for ∆F = 1 processes due to non-renorm operators that are bilinear in the lepton

fields (suppressed only by two zL,E factors):

L =
Cij
RL1

Λ2
g′H†eR

iσµνℓjLBµν +
Cij
RL2

Λ2
gH†eR

iσµντaℓjLW
a
µν + h.c.

Then ( eyµAR ≃ Cµe
RLγ/Λ

2 = (Cµe
RL2 − Cµe

RL1)/Λ
2 and Cµe ∼ √

yµye )

BR(µ → eγ) =
192 π3 α

G2
FΛ4

1

y2
µ

h
|Cµe

RLγ|
2
+ |Ceµ

RLγ|
2
i

≈ 1.2 × 10
−11

„
130 TeV

Λ

«4

!!!!!

(Expectations for τ → µγ and τ → eγ are with in exptal bounds for Λ ∼ 10 TeV.)

??? the scale of the LFV operators is pushed well above 10 TeV or, additional suppression...

But extra dim models do better: if the dipole operator is generated only via an effective four-lepton

interaction (with two lepton lines closed into a loop), its coupling receives an extra suppression factor

∼ yµ which allow to set Λ ∼ 10 TeV.



Dimension 7: majorana neutrino mag mos, etc

Dim 5 magnetic moment interaction [µ] = 1/mass) :

µij

2
ψiσ

µνψjFµν → µij

2
νciσ

µνPLνj(Fµν) + h.c.

flips the chirality of the fermion passing through, vanishes for i = j : [µ]ij = −[µ]ji) ψ is a

four-component fermion, νc = (−iγ2(ν
†)T)†γ0,

Two possible dimension seven operators which give a neutrino magnetic moment interaction after

SSB:

[OB]αβ = g′(ℓcαǫH)σµν(HǫPLℓβ)Bµν, [OW ]αβ = igεabd(ℓcαǫτ
aσµνℓβ)(Hǫτ

bH)W d
µν.

{τi} are the SU(2) Pauli matrices, the SU(2) contractions are implicit in the parentheses (ǫ = −iτ2,

(vǫu) = v2u1 − v1u2), εabd 6= ǫ is the totally antisymmetric tensor, and Wµν, Bµν are the gauge

field strength tensors for SU(2) and U(1)Y .

They are potentially interesting, because there is a mild anti-correlation of sunspot activity (solar ~B

fields) and solar νe flux... which can explain with µν <∼ current upper bd

Notice that they are lepton number violating, like majorana masses...



Pheno bounds on majorana neutrino mag mos

1. (Γ(νj → ν̄iγ) ∝ mN
ν

2. bounds from ν scattering experiments:

2µeβ ≤ 0.9 × 10
−10
µB, 2µµβ ≤ 6.8 × 10

−10
µB, 2µτβ ≤ 3.9 × 10

−7
µB expt

(γ exchange can enhance over Z at pT )

2 is because our neutrinos are majorana

3. in a stellar plasma, “decay” of photons into ν pairs: γ → νανβ allows Eγ to escapes the star.

cooling rate of globular cluster stars:

2[µ]αβ <∼ 3 × 10−12µB astro .



Dimensional analysis with majorana neutrino mag mos

mν ∼ .1eV is “small”: (Hℓ)(Hℓ) induces neutrino masses mν ∼ .1eV then the New Physics

scale where this operator is generated should be <∼ v
2/(.1eV ) ∼ 1014 GeV.

whereas µ ∼ 10−12µB is “large”

µ ∼ CJv
2 ∼ g2/(16π2)

M3
v

2 ∼ 10
−12
µB

M3 <∼ 5 × 1011GeV 3

 
10−12µB

µ

!

M <∼ 10 TeV, if it is the same mass scale cubed.

If M3 ∼ m2
WMmax (but how to build this model?), ⇒ Mmax

<∼ 108 GeV.

⇒ Naive Dim Analysis says µν unobservable small

⇒ ask the question other way round: is such a large mag mo consistent with small masses?

NB: µν measured as frction of electron magnetic moment µB = e/(2me). For e, momentum in

loops (contributing, e.g. to g− 2) is 1/p2 ∼ 1/m2
e, and me must appear upstairs to flip chirality.

For ν, might expect 1/p2 ∼ 1/m2
W , suppressing µν ∼ (m2

e/m
2
W )µB. So µν ∼ 10−12µB

suggests lepton number violation near the weak scale.



Some models with measurable majorana mag mos

Models of measurable µ: if the photon is removed from the diagrams, it would naively seem

that the dimension five neutrino mass operator is obtained, with a “natural” coefficient of order the

inverse new physics scale. Need to suppress/forbid this dim 5 mass operator.

Voloshin: [µ]αβ is flavour antisymmetric: arrange cancellations among the diagrams

contributing to the flavour symmetric mass matrix.

Barr,Freire,Zee: forbids by angular momentum conservation the magnetic moment diagram with

its photon removed. (Barr-Zee 2 loop diagram: vanishes if only 1 γ on fermion loop).

ν ν

Georgi, Randall: recipe for forbidding diagrams: attribute a discrete quantum number, such that

is conserved by mag mo, violated by mass. Introduce new physics respecting the sym that generates

the mag mo. So then the new physics only contributes to the mass operator via higher order loops

involving SM fields who don’t respect the sym...



EFT: bounds on mag mo from RG mixing to dim 7 mass operator?

Suppose ν mag mo arises from [OW ]αβ,

[OW ][αβ] = igεabd(ℓcαǫτ
aσµνℓβ)(Hǫτ

bH)W d
µν → Feynman rule for ντ−W+ ∼ Cv2

Λ3
σµνk

µ

(where µν ≃ Cv2/Λ3). Does it mix to dim 7 mass operator (RG running Λ → mW )

[OM ]{αβ} = (ℓcαǫH)(Hǫℓβ)(H
†
H)

via diagram (and also W mag mo at other vertex):

να ντ⊗

W+

τ

X X
mτ mτ

NB: must have Yukawa insertions, because [µ]αβ is flavour anti-sym, whereas [m]αβ is sym, so at

best can get

δ[m]αβ ∼ g

16π2
µατ |me2

α −m
e2
τ | log Λ2

NP

m2
W



Check: do those operators really mix?

να ντ⊗

W+

τ

X X
mτ mτ

Guestimate (zero external momentum, no 2s, mW → 0 since):

∼ g2CWv
2

Λ3

Z
d4k

(2π)4
σµνk

µk/

k2

m2
τ

k2
γν

1

k2

∼ ig2

2
[µ]ατ

Z
d4k

(2π)4
[k/ γ

ν − γ
ν
k/ ]

k/

k2

m2
τ

k2
γ
ν 1

k2
∝ g

2
[µ]ατm

2
τ

Z
d4k

(2π)4

1

k4

a log div! Add diagram with mag mo at ντ vertex, gives

δ[m]αβ ∼ g2

16π2
µατ |m2

eα
−m2

τ | log
Λ2
NP

m2
W

Is the bound interesting?

Marginally: if hierarchical mν, a µeτ relevant to solar physics (= can fit variation of solar ν flux

with solar cycle), overcontributes to [mν]eτ by factor ∼ 10.



Pandora’s Box of Fermion Horrors : [µ]ij is flav antisym

Use Peskin conventions, and notation. (NB: W+B use metric (−,+ + +). ) Take

σ
0
=

„
1 0

0 1

«
, σ

1
=

„
0 1

1 0

«
, σ

2
=

„
0 −i
i 0

«
, σ

3
=

„
1 0

0 −1

«
, (1)

and

γµ =

„
0 σµ

σ̄µ 0

«
, σµν =

i

2
[γµ, γν], γ5 = iγ0γ1γ2γ3 =

„
1 0

0 −1

«
(2)

where σ̄µ = (σ0,−σi).

So γ0† = γ0, and γ0γµ†γ0 = γµ.

Fermions anti-commute, cad they are grassman, but NB complex conjugation of grassman numbers

is defined such that (αβ)∗ = β∗α∗.

A basis for 4× 4 Dirac matrices is {I, γµ, γµγ5, γ5, σµν}; according to Haber and Kane Appendix

D, these have property that Γ = γ0Γ†γ0.



To convert from 4-component notn to 2...:

A 4-comp fermion ψD can be written as two chiral 2-comp fermions (LH = χ, and RH = η̄):

ψD =

„
χα

η̄β̄

«

The 2-comp indices α and β̄ run from 1..2, and are contracted with the anti-sym epsilon tensor

εᾱβ̄ = ε
αβ

=

„
0 1

−1 0

«
, ε

ᾱβ̄
= εαβ = −εαβ

NB sign flip in going from dotted to undotted (barred in my incompetent latex) indices.

Undotted indices are always contracted up-down:

χρ = χ
α
ρα = ε

αβ
χβρα = −ραχα = ρ

α
χα

and dotted indices down-up, and the ε flips sign in getting bars (sign flip because of up-down vs

down-up summing conventions: ρ̄β̄ = ρ̄ᾱε
ᾱβ̄, but ρ̄β̄ = (ρβ)∗ = (ραε

βα)∗ ):

(ηρ)∗ = (ηρ)† = (εαβηαρβ)
∗ = (−εᾱβ̄)ρ̄β̄η̄ᾱ

= ρ̄ᾱη̄
ᾱ

So, eg

ψ̄D =
`
χ̄ᾱ ηβ

´„ 0 δᾱρ̄
δωβ 0

«
=
`
ηω χ̄ρ̄

´

In practise, there is a -ve sign from interchanging fermion fields in an operator, but not when you

take cc of the op.



The mag mo op...

For a generic Dirac fermion (coeff aij need not be antisym—fortunately, muon has mag mo)

aijψ̄iσ
µν
ψjFµν +h.c. = aijψ̄iσ

µν
ψjFµν + a

∗
ijψ̄jσ

µν
ψiFµν

=
i

2
aij(ψRi)

†
γ

0
[γ
µ
, γ

ν
]ψLj(2qµAν) +

i

2
aij(ψLi)

†
γ

0
[γ
µ
, γ

ν
]ψRj(2qµAν)

+
i

2
a
∗
ij(ψRj)

†
γ

0
[γ
µ
, γ

ν
]ψLi(2qµAν) +

i

2
a
∗
ij(ψLj)

†
γ

0
[γ
µ
, γ

ν
]ψRi(2qµAν)

Now if impose that fermion is majorana, then in 4-comp notn this means ψcM = ψM , where

ψc = CψC = −iγ2ψ∗ = −i(ψ̄γ0γ2)T , C = −CT , C−1 = C†, C†ΓC = ±1ΓT

{Γ} are the 16 basis matrices, and -ve sign under C is for the σµν. In 2-comp notn:

ψM =

„
χα
χ̄β̄

«

With all this mess, and using commutation relns of σ matrices: [σi, σj] = 2iǫijkσk it is easy to

check that the mag mo coupling of same flavour majorana fermions vanishes. Roughly, this follows

because ψ†
R ∼ ψL, so the 2nd and 4th terms in mag mo interaction are the h.c. of the f1st and

3rd, and 1st+2nd is the same as 3rd+4th , but with the fermion order interchanged...and that

interchange produces a minus sign...



Dimension 8: Non Standard (ν) Interactions (NSI)

At high intensity future ν facilities (νFact?), could have a beam of pure νµ (produce, collimate and

cool (anti)muons, then store in a racetrack where they decay).

Measure all possible oscillation probablilites Pαµ(L) = |Aαµ(L)|2 (at different distances L)

Aαµ(L) = Uα1U
∗
µ1 + Uα2U

∗
µ2e

−i(m2
2−m

2
1)L/(2E)

+ Uα3U
∗
µ3e

−i(m2
3−m

2
1)L/(2E)

Beam travels underground, “matter effect” must be included in neutrino “mass matrix” : νe are

slowed down relative to νµ,τ because νe have CC and NC interactions with e of matter.

⇒ sensitivity to sin θ13, δ, sign of ∆m2
23... as long as neutrinos don’t have other “non-standard”

interactions?

NSI in the in the CC interactions of production and detection — put a “near” detector, baseline to

short for oscillations, and look for wrong flavour charged leptons.



Non Standard (ν) Interactions (NSI) that give NS matter effect?

Question: can you put a new interaction

LNSI
eff = −εfPij 2

√
2GF(ν̄iγρLνj)(f̄γ

ρPf) (f = u, d, e)

with coeff ε >∼ 10−3 ?

At dim 6, such operators are accompagnied by CC or charged lepton interactions (current expts have

better sensitivity).

But, at dim 8!, for instance:

ēR(H
†
σ
a
ℓ)(ℓ̄σ

a
H)eR → −1

2
〈H〉2

(ēγ
ρ
Re)(ν̄γρLν)

with

ε
fP
ij 2

√
2GF =

Cv2

Λ4
⇔ ε ∼ v4

Λ4

So need NP at ∼ TeV (?see at LHC?), that should not generate dim 6 (Exercise: 1) build such a

model. 2) publish.

From EFT perspective: can one show that pre-νFact expts will be sensitive to ε <∼ 10−3?

Do these operators mix to dim 8 charged lepton operators?

...can show: finite terms but no log. :(


