Kaon Physics Review

A. Ceccucci / CERN

Flavianet School Bern 28-29 June, 2010

Content of the Lectures

- 1. Building the Standard Model (SM) with strange particles
 - Introduction
 - CP-Violation
- 2. Probing the SM and looking for New Physics
 - Ultra Rare Decays
- 3. Precision tests of Weak Interaction Universality
 - Leptonic Decays
 - Semileptonic Decays
- 4. Precision tests of the Strong Interaction
 - pi –pi scattering
 - Radiative Decays

Kaon Mesons

Particle	Mass (Me	€V)	Lifetim	e (ns)	c τ (cm) c	τ @E=100 GeV
K +	493.677	0.016	12.380	0.021	371	750 m
K ⁰	497.614	0.024				
K ⁰ _L			51.7 0).4	1551	3.1 Km
K ^o s			0.08958	•	2.68	5.4 m

Main Decay Modes

K +	$\mu^+ \nu$	63 %			
	$\pi^+\pi^0$	21 %	К ⁰ _L	$\pi^0\pi^0\pi^0$	19.5%
	$\pi^+\pi^+\pi^-$	6 %		$\pi^+\pi^-\pi^0$	13%
	$\pi^+\pi^0\pi^0$	2 %		πμν	27% (called $K^{0}_{\mu 3}$)
	$\pi^0 \mu^+ \nu$	3 % (called K+ _{u3})		πεν	40.5 % (called K ⁰ _{e3})
	$\pi^0 \mathbf{e}^+ \mathbf{v}$	5 % (called K ⁺ _{e3})			
K ⁰ _S	$\pi^+\pi^-$	69 %	- /		
	$\pi^0\pi^0$	31 %	I(.	J ^P)=1/2	(0 ⁻)

Discovery of the Kaon

Rochester & Butler, 1947 in a cloud chamber exposed to cosmic rays "Forked tracks of a very striking character"

Historical Interlude

Pion decay in nuclear emulsion Lattes, Occhialini, Powell, 1947

Dessin stéréoscopique de la collision.

Leprince-Ringuet and L'Héritiere, Wilson Chamber, 1943 Scattering of a positively charged particle on an atomic electron. If the scattering is assumed to be **elastic**, the implied mass of the particle is **990** $m_e \sim 500$ MeV!

• With hindsight, it looks as though the kaon was discovered even before the pion!

Discovery of the τ^+ (now K⁺) $\rightarrow \pi^+\pi^+\pi^-$

Old	New
Name	Name
τ	$\mathbf{K}_{\pi 3}: \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
V ₁ ⁰	Λ ⁰ → p π ⁻
V ₂ ⁰ (θ ⁰)	$K^0{}_S \rightarrow \pi^+\pi^-$
κ	K _{μ2} : K ⁺ →μ ⁺ ν
	K _{μ3} : K ⁺ →μ ⁺ π ⁰ ν
χ (θ+)	$\mathbf{K}_{\pi 2}: \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0}$
V +, Λ+	$\Sigma^+ \rightarrow p\pi^0_{,} n\pi^+$

"Stripped" emulsion technique, Bristol group, 1949

A. Ceccucci

Dalitz and the θ/τ **paradox**

Decay of τ Mesons of Known Charge*†

R. H. DALITZ‡

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York (Received February 9, 1954)

The experimental data on the 3π decay of τ mesons is summarized on a convenient two-dimensional plot, both (a) when the π -meson charges are known and (b) when they are not. Some events may be included in plot (a) only if the parent τ meson is assumed positive and arguments supporting this identification for τ mesons decaying in an emulsion are discussed. The dependence of this plot on the τ -meson spin (j) and parity (w) is discussed in general terms and those features depending particularly on w and on its relation with j are emphasized—for example, if the density of events does not vanish at the bottom of the plot, the τ meson must have odd parity and even spin. Simple estimates of the distribution, using only the lowest allowable angular momenta and a "short range" approximation, may be modified by final-state mesonmeson attractions, whose effects are discussed qualitatively. The available data are insufficient for any strong conclusion to be drawn but rather suggest even spin and odd parity for the τ meson; the need for careful assessment of geometrical bias in the selection of experimental material is stressed.

FIG. 4. The data on twenty-nine τ -meson decay events.

Parity Violation

Allegedly "original" doodle which led to the P non-conservation conjecture $\begin{array}{c} \Psi(\mathbf{x}) \\ \hline \\ \Psi(\mathbf{x}) \\$

The paradox was resolved when experiments (C.S. Wu et al. 1957) carried out according to C.N. Yang and T.D. Lee's theoretical calculations (1956) indeed indicate that parity is not conserved in weak interactions

"God is a little left-handed"

Associated Production

- The new particles were copiously produced in association by the strong interaction. Their lifetime should have been ten order of magnitude shorter if the decay was mediated by the strong interaction
- Gell-Mann & Pais: the new unstable particles possess a new quantum number "strangeness" conserved in strong interactions
- FIG. 2. Case D. Photograph of a 1.5-Bev π^- producing two neutral V particles in a collision with a proton. Tracks 1a and 2a, believed to be proton and π^- , respectively, are the decay products of a Λ^0 . A ϑ^0 is probably seen to decay into π^+ (1b) and π^- (2b). Because of the rather "foggy" quality of this picture tracks 1b, 2a, and 2b have been retouched for better reproduction.

125

261

11b

10 120

lot th

Absence of ∆S=1 neutral currents

 $\mathsf{BR}(\mathsf{K}^+\!\rightarrow\!\!\mu^+\!\nu)\!\!\sim\!\!63\%$

BR($K_{L}^{0} \rightarrow \mu^{+}\mu^{-}$) < 2.1 × 10⁻⁷ (M. Foeth, M. Holder et al.,1969)

BR(K⁺ $\rightarrow \pi^0 \mu^+ \nu$)~3%

??

BR(K⁺ $\rightarrow \pi^+ \nu \nu$) < 1.2 × 10⁻⁶ (1970)

More on Discrete Symmetries

L. Landau, 1957: "As is well known, the unusual properties of K-mesons have created a perplexing situation in modern physics....Invariance of the interactions with respect to **combined inversion (CP)** leaves space completely symmetrical....

Symmetry for combined inversion (CP) leads to the prediction of two neutral kaons (Gell-Mann and Pais, 1955)

▶ Defined CP:
$$|K_1\rangle = \left(K^0 + \overline{K}^0\right)/\sqrt{2}$$

$$|K_2\rangle = \left(K^0 - \overline{K}^0\right)/\sqrt{2}$$

$$CP= +1$$

$$CP(2\pi)=+1 \text{ short-lived}$$

$$\tau_S = 89 \text{ ps}$$

$$CP(3\pi)\sim-1 \text{ Long-lived}$$

$$\tau_L = 52 \text{ ns}$$

The long-lived neutral kaon (K⁰_L) was observed in a cloud chamber (Lande et al., 1956)

V.L.Fitch

R.Turlay J.W.Cronin J.H.Christenson

Phys. Rev. Lett. 13 (1964) 138.

$$\left| K_{L}^{0} \right\rangle = \frac{\varepsilon \left| K_{1} \right\rangle + \left| K_{2} \right\rangle}{\sqrt{1 + \varepsilon^{2}}}$$
$$\left| K_{S}^{0} \right\rangle = \frac{\left| K_{1} \right\rangle + \varepsilon \left| K_{2} \right\rangle}{\sqrt{1 + \varepsilon^{2}}}$$
$$\left| \varepsilon \right| = (2.229 \pm 0.010) \times 10^{-3}$$

CP Violation in Kaons

$$\eta_{00} \equiv \frac{\left\langle \pi^{0} \pi^{0} \left| H \right| K_{L}^{0} \right\rangle}{\left\langle \pi^{0} \pi^{0} \left| H \right| K_{S}^{0} \right\rangle} \qquad \eta_{+-} \equiv \frac{\left\langle \pi^{+} \pi^{-} \left| H \right| K_{L}^{0} \right\rangle}{\left\langle \pi^{+} \pi^{-} \left| H \right| K_{S}^{0} \right\rangle}$$

$$\eta_{00} \equiv \varepsilon - 2\varepsilon' \qquad \eta_{+-} \equiv \varepsilon + \varepsilon'$$

$$\delta_{L} = \frac{\Gamma(K_{L}^{0} \to \ell^{+} \nu_{\ell} \pi^{-}) - \Gamma(K_{L}^{0} \to \ell^{-} \nu_{\ell} \pi^{+})}{\Gamma(K_{L}^{0} \to \ell^{+} \nu_{\ell} \pi^{-}) + \Gamma(K_{L}^{0} \to \ell^{-} \nu_{\ell} \pi^{+})} = \frac{2 \operatorname{Re}(\varepsilon)}{1 + \varepsilon^{2}}$$

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} = \frac{1}{6} \left(1 - \frac{\left|\eta_{00}\right|^2}{\left|\eta_{+-}\right|^2} \right) = \frac{1}{6} \left(1 - \frac{\Gamma(K_L^0 \to \pi^0 \pi^0)}{\Gamma(K_S^0 \to \pi^0 \pi^0)} \times \frac{\Gamma(K_S^0 \to \pi^+ \pi^-)}{\Gamma(K_L^0 \to \pi^+ \pi^-)} \right)$$

Charge Asymmetry

ϵ ': CP-Violation in K⁰ \rightarrow 2 π decays

Re e'/e measurements versus time $R = \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)} \approx 1- 6 \operatorname{Re}(\varepsilon'/\varepsilon)$

.....In 2009 the full statistics result from KTeV became available→

The KTeV Detector

 Charged particle momentum resolution < 1% for p>8 GeV/c; Momentum scale known to 0.01% from K $\rightarrow \pi^+\pi^-$ • CsI energy resolution < 1% for $E_{\gamma} > 3$ GeV; energy scale known to 0.05% from $K \rightarrow \pi ev$.

NA48 Simultaneous K_L and K_S beams

19

KTeV Mass plots (full statistics)

KTeV Final (2009)

KTeV Result: $\text{Re}(\epsilon'/\epsilon) = [19.2 \pm 1.1(\text{stat}) \pm 1.8(\text{syst})] \times 10^{-4}$ = $(19.2 \pm 2.1) \times 10^{-4}$

(KTeV 2003: Re(ϵ'/ϵ) = [20.7 ± 1.5(stat) ± 2.4 (syst)] × 10⁻⁴)

NA48/2: Search for CP-Violation in Charged Kaon Decays

-Simultaneous K⁺ and K⁻ beams,

- -Superimposed in space,
- -Momentum bite (60±3) GeV/c

NA48/2: Improved Limits on Direct CP-Violation in K \rightarrow 3 π

Models of CP-Violation

- Super-weak interaction (Wolfenstein)
 - To be seen only in kaon oscillations and not in decays
 - No other plausible experimental effect
- Three families of quarks (Kobayashi & Maskawa, 1973)

 $N_g=2$ $N_{phase}=0 \Rightarrow$ No CP-Violation

- $N_g=3$ $N_{phase}=1 \Rightarrow$ CP-Violation Possible
 - When proposed, not even the charmed quark had yet been discovered!!
 - Important experimental implications:
 - Three families of quarks
 - A second Manifestation of CP-Violation in Kaon decays: ε' ≠0
 - CP-Violation observable in other systems (B mesons)

All experimental manifestations of CP-Violation (K and B decays and mixing) are so far consistent with "just" one complex phase in the CKM matrix ("Standard Model")

Now we must look for patterns of deviation....

Kaons and Unitarity Triangle

Ultra-rare K Decays

- The contribution to \mathcal{V} these processes due to the Standard Theory is strongly suppressed (<10⁻¹⁰) and calculable with excellent precision (~%)
- They are very sensitive to possible contributions from New Physics

$K \rightarrow \pi v \overline{v}$: Current Status

Decay	Branching Ratio ($\times 10^{10}$)		
	Theory(SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15^{[2]}}_{-1.05}$	
$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.26 \pm 0.04^{[3]}$	<260 (90% CL) ^[4]	

[1] J.Brod, M.Gorbahn, PRD78, arXiv:0805.4119
[2] AGS-E787/E949 PRL101, arXiv:0808.2459
[3] M. Gorbahn
[4] KEK-E391a arXiv:0911.4789v1

$K^+ \rightarrow \pi^+ \nu \nu$: Physics Motivation

In the Standard Model:

$$B(K^+ \to \pi^+ \nu \overline{\nu}(\gamma)) = k_+ (1 + \Delta_{EM}) \times \frac{|V_{ts}^* V_{td} X_t(m_t^2) + \lambda^4 \operatorname{Re} V_{cs}^* V_{cd} (P_c(m_c^2) + \delta P_{c,u})|^2}{\lambda^5}$$

- NLO QCD [Buchalla, Buras '94], [Misiak, Urban '99], [Buchalla, Buras '99]
- Charm
 - NNLO QCD [Buras, Gorbahn, Haisch, Nierste '06]
 - EW Corrections to P_c [Brod, Gorbahn '08]
- Long Distance
 - |∆E|<1% [Mescia, Smith '07]</p>
 - $\delta P_{c,u}$ +6% [Isidori, Mescia, Smith '05]

The parametric error will be further reduced

Kaon Rare Decays and NP

Courtesy of C. Smith

C. The Z penguin (and its associated W box)

-
$$SU(2)_L$$
 breaking: $SM : v_u^2 Y_u^{*32} Y_u^{31} \sim m_t^2 V_{ts}^* V_{td}$
 $MSSM : v_u^2 A_{\tilde{u}}^{*32} A_{\tilde{u}}^{31} \sim m_t^2 \times O(1)?$
 $MFV : v_u^2 A_{\tilde{u}}^{*32} A_{\tilde{u}}^{31} \sim m_t^2 V_{ts}^* V_{td} |A_0 a_2^* - \cot \beta \mu|^2.$

29

- Relatively slow decoupling (w.r.t. boxes or tree).

Courtesy of S. Jaeger $\varepsilon 1\varepsilon$

Re(ϵ'/ϵ)_{exp} = 16.8 (1.4) x10⁻⁴ Z penguin

Re($\epsilon' \epsilon$)_{th} = Im λ_{t} [-3 + 12 R₆ + R₈ - (2 + 10 R₈ C) + ...]

 $\langle \mathbf{Q}_6 \rangle |= 0$

 R_{6} , $R_{8} = O(1) \implies$ cancellation \implies large uncertainty

 $\langle Q_8 \rangle |=2$

lattice: RBC/UKQCD expect 0(20%) error on [...] w/in 3y new physics: Im $\lambda_{+}C \rightarrow Im \lambda_{+}C + Im C_{NP}$ N Christ, talk at Kaon09

SM=exp value would constrain* | Im C_{NP} | < 3x10⁻⁵ (20%SM) would still allow 0(40%) effect in K_L -> $\pi \nu \nu$

*neglecting possible cancellations with other contributions to ε 7 ε

Neutral Beams for $K^0_L \rightarrow \pi^0 v \bar{v}$

"Pencil"

- π^0 + "nothing"
- P_T cut for $\Lambda \rightarrow n\pi^0$ & $K^0_L \rightarrow 2\pi^0$ suppression
- hermetic calorimetry

"Microbunched"

- E_{K} from Time Of Flight
- Low(er) Kaon Energy
- KOPIO BNL Concept further elaborated for FNAL (Bryman@KAON09)

Ехр	Machine	UL 90% CL	Notes
KTeV	Tevatron	< 5.7 x 10 ⁻⁷ (π ⁰ →eeγ)	
E391a	KEK-PS	<2.6 x 10 ⁻⁸	
КОТО	J-PARC		Aim at 2.7 SM evts / 3 y
KLOD	U70		Excellent Design
KOPIO			Opportunity at Project X (IC2) ?

E391a @ KEK PS

E391a Final Result

- arXiv:0911.4789v1
- Based all full statistics (2004-2005) including reanalysis of already published data
- At these sensitivities backgrounds from kaon decays are negligible w.r.t. neutron induced ones

Background		Estimated # evt
Beam Halo neutron	CC02-π ⁰ CV-π ⁰ CV-η	0.66 0.39 <0.39 0.19 0.13
$K^0_L \rightarrow \pi^0 \pi^0$		(2.4 1.8) x 10 ⁻²
Other	Backward π^0	<0.05
Total		0.87 0.41

Signal Acceptance ~1% Flux 8.7 x $10^9 K_L^0$

 $B(K_{L}^{0} \rightarrow \pi^{0} \nu \nu) < 2.6 \times 10^{-8} 90\% CL$

Factor of x3 improvement

KOTO (E14) @ JPARC

Aim for Flux x Run Time x Acceptance = 3000 x E391a

	кото	E391a (Run2)	
Proton energy	30 GeV	12 GeV	
Proton intensity	2e14	2.5e12	
Spill/cycle	0.7/3.3sec	2/4sec	
Extraction Angle	16 deg	4 deg	
Solid Angle	9µStr	12.6µStr	
KL yield/spill	7.8e6	3.3e5	x30 /sec
Run Time	3 Snowmass years =12 months.	1 month	x10
Decay Prob.	4%	2%	x 2
Acceptance	$3.6\%^*$	0.67%	x5

Main Ring Parameters: L=1.6 Km 30 GeV $2 \times 10^{14} \text{ ppp}$ 0.3 MW0.7 s spill / 3.3 s

Details in H. Nanjo KAON'09

KOTO @ JPARC

"Confirmation of neutral kaons in the KL beam line at Hadron Hall, J-PARC" Dec 7, 2009

Beam Survey

K

Plans for K⁰_L @ FNAL Project X

- •KOPIO-like: TOF to determine Kaon Energy
- •Knowledge of E_{K} allows rejection of two body decays
- Pointing Calorimeter
- •4 π veto for neutral and charged particles
- •Small Beam instead of flat beam

- •Project X (IC2): CW p LINAC ~3 GeV
- •Excellent bunch timing
- •High flux of low energy K⁰_L

Techniques for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

"Stopped"

- Work in Kaon frame
- High Kaon purity (Electro-Magneto-static Separators)
- Compact Detectors

"In-Flight"

- Decays in vacuum (no scattering, no interactions)
- RF separated or Unseparated beams
- Extended decay regions

Ехр	Machine	Meas. or UL 90% CL	Notes
	Argonne	< 5.7 x 10 ⁻⁵	Stopped; HL Bubble Chamber
	Bevatron	< 5.6 x 10 ⁻⁷	Stopped; Spark Chambers
	KEK	<1.4 x 10 ⁻⁷	Stopped; $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
E787	AGS	(1.57 ^{+1.75} -0.82) x 10 ⁻¹⁰	Stopped
E949	AGS	(1.73 ^{+1.15} - _{1.05}) x 10 ⁻¹⁰	Stopped; PPN1+PPN2
NA62	SPS		In-Flight; Unseparated
P996	FNAL		Stopped; Tevatron as stretcher ring?

E787/E949: Final Result

E787/E949 Technique

"The entire AGS beam of 65 x 10¹² (Tp/ spill) at a momentum of 21.5 GeV/c was delivered to the E949 K⁺ production target"

•Duty Factor: 2.2 s / 5.4 s ~ 40%

- •1 int. length Pt target
- •Before separators: 500 π : 500 p : 1 K
- •After separators: Purity $K:\pi \sim 3-4:1$
- •Incoming **710 MeV/c** K⁺ identified by Č and slowed down by BeO and Active Degrader
- •~27% K⁺ stopped in the target (1.6 MHz)
- •1 T solenoid

K⁺: Č x B4 x Target

 π^+ : Delayed Coincidence Range Energy Momentum $\pi^+ \rightarrow \mu^+ \rightarrow e^+$

Stopped Kaon Redux?

Can one improve significantly over the E949 PNN1 efficiency figures?

Selection	α	Notes
Κμ2	0.38	Beam,T, RS rec.
Κπ2	0.88	E, range, selection
Pscat	0.62	Rej. of beam scat.
π→µ→е	0.35	Decay chain
Trig	0.18	Trigger eff.
PS	0.36	Phase Space
nucl.	0.50	Pion interaction
T2	0.94	topology
fs	0.77	Stopping Fraction
"Standard"	1.7 x10 ⁻³	Total efficiency

•"Only" ~22% (.77 x .28) of kaons stopped in target

•The product of the red factors (1.5 x 10⁻²) Is a high price to pay: 1/(1.5 x 10⁻²) ~ 66x

Possible Improvements (Bryman@KAON09):

- 1. Lower Kaon Momentum to increase the stopped kaon fraction
- 2. Larger Beam acceptance
- \rightarrow 4-5x
- 3. Detector Improvement: finer RS segmentation; LXe γ veto

 \rightarrow > 5x

Stopped Kaons at Fermilab: P996

- The status of P996 is that the Fermilab PAC has stated that "Proposal meets the criteria for Stage-I [scientific] approval".
- P996 as proposed requires 3-5 years of running the Tevatron after RunII as a 150 GeV Stretcher to reach a 1000 event SM sensitivity.
- Fermilab and the P996 collaboration are now in discussions with the Department of Energy exploring the possibility of running the Stretcher after Runll

(Update kindly provided by Bob Tschirhart from Fermilab)

K⁺ Decays in flight:NA62

The CERN proton **Complex** is unique

The SPS is needed as LHC proton injector only part-time

For the remainder of the time it can provide 400 GeV/c protons for fast or slow extraction

NA62:

Birmingham, **Bratislava** Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, **INR Moscow**, Liverpool, Louvain, Mainz, Merced, Naples, Perugia, Pisa, Rome I, Rome II, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin

Revised and adapted by Antonella Del Rosso, ETT Div in collaboration with B. Desforges, SL Div., and D. Manglunki, PS Div. CERN, 23.05.01

NA62 Detectors

Drawing by Ferdinand Hahn Total Length 270m

Background Rejection

4. Particle Identification

- K⁺ Positive identification (CEDAR)
- π/μ separation (RICH)
- π/e separation (E/P)

Decay	BR	Stin D Region II
$K^+ \rightarrow \pi^0 e^+ \nu (K_{e3})$	0.051	K+ $\rightarrow \mu^+ \pi^0 \nu$ K+ $\rightarrow \mu^+ \pi^+ \pi^- \nu$ K+ $\rightarrow \mu^+ \pi^+ \pi^- \nu$
$K^+ \rightarrow \pi^0 \mu^+ \nu (K_{\mu 3})$	0.034	
$K^+ \rightarrow \mu^+ \nu \gamma (K_{\mu 2 \gamma})$	6.2×10 ⁻³	
$\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{-} \mathbf{e}^{+} \nu \left(\mathrm{K}_{\mathbf{e4}} \right)$	4.1×10 ⁻⁵	
K^+ → $π^+$ $π^-$ μ ⁺ ν ($K_{μ4}$)	1.4×10 ⁻⁵	m ² _{miss} GeV ²

NA62 Sensitivity

Decay Mode	Events
Signal: $K^+ \rightarrow \pi^+ \nu \overline{\nu} SM[flux = 4.8 \times 10^{12}]$ decay/year]	55 evt/year
K ⁺ →π ⁺ π ⁰ [η _{π0} = 2×10 ⁻⁸ (3.5×10 ⁻⁸)]	4.3% (7.5%)
$K^+ \rightarrow \mu^+ \nu$	2.2%
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%
Other 3 – track decays	≤1.5%
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible
Expected background	≤13.5% (≤17%)

Definition of "year" and running efficiencies based on NA48 experience: ~100 days/year; 60% overall efficiency

NA62 Focused R&D

- Gigatracker (GTK) : Beam tracker (10⁹ part/s) based on Si micro pixels with ~100 ps time resolution; thickness of one station ~0.5% X₀
- Straw Tracker (STRAW) : To be operated in the vacuum tank: total thickness for 16 views ~1 % X₀
- P.I.D. (π/μ) up to P = 35 GeV/c Neon RICH with 17 m focal length spherical mirrors
- Hermetic Coverage: π⁰ suppression factor ~ 10⁸
 Employ high performance calorimeters as photon vetoes: Liquid Krypton (NA48) + Lead Glass (OPAL)

NA62 Beam & GTK

•Sensitivity is NOT limited by protons flux but by beam (GigaTracKer (GTK))

•Similar amount of protons on target as NA48 (~5 10¹² / pulse)

First Results from GTK Tests

 taking into account the energy distribution of particle hits in the Gigatracker, one can extract a weighted average value for the jitter on T₁ "We come from Research to working Prototype"

Flavio Marchetto

LAV ANTI-A1

- In summer 2009 the first station A1 was built at LNF and shipped to CERN. It is now mounted on the blue tube
- A test beam run with the complete system including prototype front-end electronics (FEE) was performed at the end of October 2009

OnLineMonitoring
Start Monitoring Stop Monitoring 154 03.18.28 342
I

LAV Time resolution

RICH 2009 prototype test beam

- 12.5.-27.6.2009: test beam
- 1 mirror with f=17m, 50 cm wide
- 414 PMT + full electronics

2009 test beam

20 GeV/c: 3 positrons and 1 pion events

20

10

30

40

Hits Number Entries

50

Mean

RMS

572190

17.19

7.311

56

RICH Test, June 2009, Preliminary

64 Straw technology Prototype

The straws are installed in vertical position
Pretension is 1.5 kg
Spacer validated over 2.1 m.

Straw straightness

GGI March 24, 2010 59

STRAW Prototype: Beam Test Residuals

NA62 Planning

Preliminary

Wrap-up of Part 1

- We have reviewed how the "Standard Model" was largely built studying the properties of the strange mesons
- We have seen that ϵ_{K} provides one of the strongest constraints on the Unitarity Triangle...
- …And that perhaps soon (3 years?) LQCD could finally provide a precise prediction for ε'
- Finally, we have reviewed the strong experimental program which is underway to study ultra-rare kaon decays