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he lectures cover a selected numbers of topics In
flavour physics, reflecting the flavour of the lecturer.

he focus will be on the fundamental concepts.

e Focus: * neutrino physics * B meson physics

A complete coverage of the field can be found In re-
cent books, reviews, reports and published lectures:

— Reading list



Prologue Standard Model of Elementary Particle Physics (SM)

e Fundamental forces in nature < Local gauge principle U(1) x SU(2)y x SU(3)

Electromagnetism (QED) Weak interactions Strong interactions (QCD) Gravity
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e Building blocks of matter:
fundamental leptons and quarks (left-handed doublets, right-handed singlets):
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e Flavour physics is that part of the SM which differentiates between
the three families of fundamental fermions.



Main successes of SM:

e All gauge bosons (J = 1) and fundamental fermions (J = ) experimentally verified

e Electroweak precison measurements at LEP (CERN), SLC (SLAC), Tevatron
(Fermilab) confirmed SM predictions in the gauge sector: 0.1% accuracy !



Main successes of SM:

e All gauge bosons (J = 1) and fundamental fermions (J = ) experimentally verified

e Electroweak precison measurements at LEP (CERN), SLC (SLAC), Tevatron
(Fermilab) confirmed SM predictions in the gauge sector: 0.1% accuracy !

Weaknesses of SM:

¢ Higgs boson not observed vet, mechanism of mass generation not confirmed vet
(unitarity problem has to be solved)

e Many free parameters, mainly in the flavour sector of SM =z _ ¢ L T
(hierarchy of masses and mixing parameters) B Ha‘
50 E s < ]
e Gravity not involved in unification (Planck scale) . ! T
: Yo, _—
e Unification of electromagnetic, weak and strong force. 3n S
Indications: 0 ]
e quarks, leptons compatible with higher gauge symmetry: 10 : i
U(1) x SU(2)r x SU(3) — SU(5) or SU(10) 1§ ay
e unification of coupling constants at higher scale O T 1



Hierarchy problem: Quantum corrections to Higgs boson mass:

Higgs Higgs
/’_\ ma ~ (ma tree T 1f(16772)ﬁr%|p

N

— Q)uadratic sensitivity to highest scale in the theaory

Planck
Standardmodel )
C"! ! — -
1012 GUT (102? E
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After inclusion in larger theory: No stabilisation of the Higgs boson mass at the SM scale

Comparison:
Fhoton and quark masses protected by gauge symmetry and chiral symmetry, respectively

Many solutions to the hierarchy problem on the market:
Little Higgs Models, Extra Dimensions, Supersymmetry, ....



e Supersymmetry offers most elegant solution for the hierarchy problem

Higgs Higgs Higgs Higgs

om3 ~ Ajp = dmd ~ log(Mstop/Mtop); Msusy < 1TeV

e Generally to avoid fine-tuning of the Higgs mass (working hypothesis of LHC):

mH (T”H)tree + 1/(16172)!'\ Np = Anp < dmmyy = 1 TeV



e Supersymmetry offers most elegant solution for the hierarchy problem

Higgs Higgs Higgs Higgs

om3 ~ Ajp = dmd ~ log(Mstop/Mtop); Msusy < 1TeV

e Generally to avoid fine-tuning of the Higgs mass (working hypothesis of LHC):

mH (T”H)tree + 1/(16172)!'\2 Np = Anp < dmmyy = 1 TeV

e However, electroweak precision measurements (LEP,SLC, Tevatron) naturally
indicate a higher new-physics scale (parametrized by higher-dimensional operators):

Little hierarchy problem ANF’ ~3—10TeV

Highly nontrivial constraint on the possible new physics in the LHC reach!

e [ here is yvet another indirect way to look for new-physics beyond SM ...



First status report Flavour in the SM

CKM mechanism of flavour mixing and CP violation: Vekm, Jokm

3
Im[Vy; Vg ViViil = Jokm D €ikm €jin Jekm ~ O(1075)

mn=1

VidVip + VeaVep + ViaVi, = O



First status report Flavour in the SM

CKM mechanism of flavour mixing and CP violation: Vekm, Jokm

VW
JH qi [m e UDw
d; - Vea Ven
] CKM ta “ip
- Vij ca Veo
wht
1 He
3
Im[Vy; Vg ViViil = Jokm D €ikm €jin Jekm ~ O(1075)

mn=1

All present measurements (BaBar, Belle, CLEO, CDF, DO,....)
of rare decays (AF =1),

of mixing phenomena (AF = 2) and

of all CP violating observables at tree and loop level

are consistent with the CKM theory.

Impressing success of SM and CKM theory !!



First status report Flavour in the SM

CKM mechanism of flavour mixing and CP violation: Vekm, Jokm

T his success is somehow unexpected !!

Mgysy Msysy , S S
Photon, Z
E b o

Flavour-changing-neutral-currents as loop-induced processes are
highly-sensitive probes for possible new degrees of freedom

Impressing success of SM and CKM theory !!
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Global Tit, consistency check of the CKM theory.
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Closer Look:
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CP violating CP conserving observables
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Loop processes



From left, Yoichiro Nambu, Makoto Kobayashi and Toshihide Masukawa, who shared the Nobel Prize in Physics on Tuesday
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Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory
of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation
are studied. It is concluded that no realistic models of CP-violation exist in the quartet
scheme without introducing any other new fields. Some possible models of CP-violation are

also discussed.
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CP.-Violation in the Renormalizable Theory of Weak Interaction 6567

Mext we consider a 6-plet model, another interesting model of CFPyiolation,
Suppose that G-plet with charges (2, 0, 0, 0 —1, 0 —1, Q2 —1) iz decomposed into
Sl e (2] multiplets as 2+ 242 and 1+1+1+1+1+1 for left and right com-
ponents, respectively, Just as the case of (A, C), we have a zimilar expression
for the charged weak corrent with a 3x3 instend of 2% 2 unitary matrix in Eq.
{5). As was pointed out, in thiz case we cannot absorb all phases of matrix
elements inte the phase convention and can take, for example, the following
EXprERRInn

cos —ain , cos & —zin £, s5in &y
sind, cos fy eos ), cos O cos 0y —sin 0y zin 0% cos §, cos 8, sin 0, -+ sin 0 cos Ae* |
\=in 8, sinfy cos d, sin {, cos 8, + cos & 5in fe™  coa § ain @, sin #,— cos By sin Ge"
(13)

Then, we have CPviolating effects through the interference among these different
current components. An interesting feature of this model is that the CPwviolating
effects of lowest order appear oaly in 450 non-leptonic processes and in the
semi-leptonic decay of neutral strange mesons (we are not concerned with higher
states with the new guantom number). and not in the other semi-leptonic, 45=0
pondeptonic and pure-leptonic processes,

S0 far we have conzidered only the straightforward extensions of the original
Weinherg's model. However, other schemes of underlying gauge groups and/or
gealar fields are possible. Georgi and Glashow's model” is one of them. We
can easily see that CPviclation is incorporated into their model without introduc
ing any other fields than {many)} new fields which they have introduced already.

Relerences

11 5 Weinberg, Phys. Rev, Letters 19 (1957}, 1264; T (15711, 1684,
21 7. Maki snd T, Maskawa, RIFF.148 (prepeint), April 1972,
3 P, W. Higgs, Phys. Letters 12 (1854), 132; 13 {1964}, 508.
G. 3. Guralnik, C, B, Hagen and T. W. Hibhle, Phys. Fev. Letters 13 (1964], 585.
41 H, Georgi and 5. L. Glashow, Phys, Rev, Letters 28 (19723, 1484,

Errata:

Equation {13} should rend as
cina ) —ain ) cos iy —gin & sin iy ;
gin fooady  coslcos faeos dy — sin fhein Hee®  poslycos fhein s + sin fyoos dapt | .

sinihsinfy  oosdsinfaons fy + cos fasin l'.',w."’ ons iy sin fgsin fy — cosfgons |'.'_-|+-."‘

(13)



However,...

e CKM mechanism is the dominating effect for CP violation and flavour
mixing in the quark sector;

but there is still room for sizable new effects and new flavour structures
(the flavour sector has only be tested at the 10% level in many cases).

e [ he SM does not describe the flavour phenomena in the lepton sector.



Flavour problem of SM

Lsnr = Laauge (Ais ¥i) + LHiggs (P, 2, v)

¢ Gauge principle governs the gauge sector of the SM.



Flavour problem of SM

Lsnr = Laq uge (A-i: ¢E) + ﬁHig;gs (CD? Wi, “”)

¢ Gauge principle governs the gauge sector of the SM.

e NO guiding principle in the flavour sector:

CKM mechanism (3 Yukawa SM couplings) provides a phenomenological
descripton of quark flavour processes, but leaves significant hierarchy of
quark masses and mixing parameters unexplained.



Many open fundamental questions of particle physics are
related to flavour :

¢ How many families of fundamental fermions are there 7

¢ How are neutrino and quark masses and mixing angles are generated 7

e Do there exist new sources of flavour and CP vioclation 7

e Is there CP violation in the QCD gauge sector 7

e Relations between the flavour structure in the lepton and quark sector 7



B meson physics Prologue

What can we learn from decays of B mesons 7

B9, =%d(s), BY, = bd(5), Bf =bu, By = bi

e b quark heaviest quark with pronounced hadronic
bound states (QCD tests)

e Many different decay modes (mp = 5.27GeV)
— rich CKM phenomenology

e GIM suppression largely relaxed because m; very large
(BR of FCNC in B system =~ 10— « K or D system)

e Independent test of the mechanism of CP violation
(large effects «— K system)



Large my,, overrides GG/ suppression

b Vo u Vu g bVa ¢ Va g bVe t Ve g

A = Vi Vaaf (ma) + VaVeaf (me) + VisViaf (me)

A=0 if my=m:;=my

However my; > m,.m,,

f(m) = m? quadratic GIM f(m) = log(m) logarithmic GIM



Central Questions in B Physics

CKM phenomenology

Mechanism of CP violation

Indirect search for new physics = Lectures by Uli Haisch

Quantitative understanding of long-
distance strong interactions = Lectures by Thomas Mannel,

by Pilar Hernandez, by Silas Baene



CKM Phenomenology, Unitarity Triangle
Why 7

e determine fundamental SM parameters
(Yukawa-matrices Viud . model building)

e CKM phase: the only source of CP-violation?

e Ooverconstraining the unitarity angle
(possible signals for new physics)

‘Jp, qi Im A II"'rucI |I"'ruI::-Jt
4 ~7 I VoV
~ vijCKM td 'tb
uc:d 1ILIIr-':rI::-
1
W -
Vad Vie Ve — %—12 A AN (p —in)
15'.‘_-'.?:[' M= 1"r|:|:.[ 1",;:3 1"r|:ﬁ = —-}l 1-— %a}l.: ..-5!..-:&2
Viae Ve Vi AN —p—in) —AX2 1

Unitarity: VidVr + VeaViy + VigVi, = 0



CKM Phenomenology, Unitarity Triangle
Why 7

e determine fundamental SM parameters
(Yukawa-matrices Viud . model building)

e CKM phase: the only source of CP-violation?

e Ooverconstraining the unitarity angle
(possible signals for new physics)

JH 0 im A Vg Yub
q] -._j "u'rcd UGD vy
~ v, KM d o
] Vea Veb
1L
W Y P .
Vie Vie Vi — Lz A AN (p— i)
15'.‘_-'.?:[' M= 1"r|:|:.[ 1",;:3 1"r|:ﬁ = —-}l 1-— %a}l.: ..-5!..-:&2
Via Vie Vi AL —p—in) —AM2 1
Unitarity: VidVip + VeaVep + ViaV, = 0

Caveat: Yukawa couplings & CKM matrix
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CP Violation

Why i1s CP violation interesting 7

e Standard Model is very predictive: only one CP-violating
parameter (Kobayashi-Maskawa mechanism 1972!).

e Some CP asymmetries (such as acp(Bg — J/4Kg)) are
theoretically very clean (hadronic uncertainties drop out).

e Baryon asymmetry: one needs more sources of CP
violation (not necessarily relevant at low energies).

e Various extensions of the SM offer new sources of CP
violation .



CP violation in the SM

In chiral gauge theories CP is a natural symmetry

1
Loauge = —=Fu FF + ’u’,ﬂi (ia D)1, + ﬂ}L(iﬁ@)ﬂ)R

4
D is the covariant derivative
L violates P Right-handed fermions do not couple to gauge bosons.
L violates C Left-handed antifermions do not couple to gauge bosons.

L preserves CP Both left-handed fermions and right-handed antifermions

couple to gauge bosons.



CP violation in the SM

In chiral gauge theories CP is a natural symmetry

1
Loauge = —7Fuw " + UL (10 D)YL + Y }(ia0) R
D is the covariant derivative
L violates P Right-handed fermions do not couple to gauge bosons.

L violates C Left-handed antifermions do not couple to gauge bosons.

L preserves CP Both left-handed fermions and right-handed antifermions

couple to gauge bosons.

Massless gauge theories are invariant under CP



The weak force breaks C and P maximally

Anti-Myon Neutrino
+1 0
W+
u Anli-d
+2/3 +1/3
| ]
'.|'|:+
\ Anti-Myon MNeutrino
+1 0
W+
u Anti-d
+2/3 +1/3
/ I t I
Myon Anti-Neutnno
-1 0
W
Anti-u d
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The weak force breaks C and P maximally

Anti-Myon Meutrino
+1 0
w-l-
u Anti-d
+2/3 +1/3

Myon Anti-Neutrino
-1 0
w-
Anti-u d
-2/3 ;”3 W boson couples only to left-handed fermions

= and to right-handed anti-fermions



M. C. Escher

Charge Conjugation




SM basics

L] Gauge group GSI‘»’[ = S'U(Bjc X S'U(Q}L X L‘T(l)y



SM basics

e Gauge group Gsm = SU(3)c x SU(2), x U(1)y
e Fermion representations

Q1:(3,2) 4156, Upi(3,1)42/3, Dgi(3,1)_ 153, L1, (1,2) 152, Eg;(1,1)_y

Notation: left-handed quarks, Q1. SU(3)¢, doublets of SU(2);, and carry hypercharge Y = +1/6

I interaction eigenstates



SM basics

e Gauge group Gsm = SU(3)c x SU(2), x U(1)y
e Fermion representations

Q1:(3,2) 1160 Upi(3,1) 4273, Dpi(3,1) 173, Li;(1,2) 12, Epi(1,1)4

Notation: left-handed quarks, Q1. SU(3)¢, doublets of SU(2);, and carry hypercharge Y = +1/6

I interaction eigenstates

1 =1, 2.3 Hlavor index

e Spontaneous symmetry breaking

. | 0
‘;’t‘(lﬂ 2)4—1}2 qﬁﬂ)> — ( ,;f') GGapyg — SU(B){: X U(I)EM
2

. Z . i
Lomee(QL) = 1QLVu (E}FL i 595(}*{; Aa + Egﬂ’f o+ =9 B#) Qi

CP conserving



o Ll = Yij QLi#DR; + Y5 QLioUp; +hic.

J J

CP violating if and only if Im {det[YY*! Yy} # 0.
Jarlskog 1985
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A CP transformation Y 0UR; < @quﬂwl,i.

CP invariance if Y;; = Y%
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Yukawa couplings only source of flavour violation in SM

e Quark Yukawa couplings break the quark flavour symmetry

down to baryon number conservation

Gk (Yl =0) = UB)gxUB)p xU3)y — G™F = U(1) 5
e Two physically equivalent sets of quark Yukawa couplings

(YY) & (Y?1=ViY*V;, Y =V]Y*V;) V unitary matrices

e Number of physical parameters in quark Yukawa couplings

(18 x2) — (9 x 3) +1=10



'Complex phase in CKM matrix related to CP violation’

(x
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Re(¢?) — (v + H®)/V2
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= —,i:?u — {i&fd)ijDEiDLj + (ﬂ’fu)ijﬂrgiﬂréj +hee. ﬂjq - Eyq
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e Diagonalization of mass matrices by unitary matrices V,z and Vg

Vo M L’jﬂ = Mdmg qri = (Vql-jiqu-jv qri = (L;R)iquif%j (¢ =u,d)
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'Complex phase in CKM matrix related to CP violation’

o —ﬁif — {f'bird)ijDEin'%j + (‘Mu)ijygi{;ﬁj +hee. qu - %Yq

Re(¢?) — (v + H®)/V2

e Diagonalization of mass matrices by unitary matrices V,z and Vg

Vo M L’jﬂ = Mdmg qri = (Vql-jiqu-jv qri = (L;R)iquif%j (¢ =u,d)

. EH t — %HLE - (T' u,LT' L—._PLLJ d-_[._jl-{:{f_F + h.c.

7 S PO Fd | _
V CHKM — ! uLT" dL 1 (LE‘-HPVIVCHM - 1)

e [

q

— o e "_ ’ ) d.'
Var = Py Vo, Var = Py Vyr M™% unchanged

(ﬁq = u,d) diagonal unitary (phase) matrices.



'Complex phase in CKM matrix related to CP violation’

—L%; = (M), DL, Db + (M), ULUL +he. M, = %yq

Re(¢?) — (v + H®)/V2

Diagonalization of mass matrices by unitary matrices V,; and Vg

Vo M L’jﬂ = Mdmg qri = (Vql-jiqu-jv qri = (L;R)iquif%j (¢ =u,d)

Ly = ST (Vir Vil )iy dis W +he
Vern = Ve Vil s (VeruVeku = 1)
P, (xq — u,d) diagonal unitary (phase) matrices.

— o e "_ ’ ) d.'
Var = Py Vo, Var = Py Vyr M™% unchanged

Physical parameters:
6 quark masses + (9 CKM parameters —5 relative phases) = 10



Nalve argument:

e The charge current interaction Lagrangian in mass eigenstate basis

b 95 s -
f:aur_p = Ur,; .F#L*.ij dLjI’I’# -+ v—lid_,[j ;#Li;j-i'_i-_ﬂ.jv{# .

=
V2



Nalve argument:

e The charge current interaction Lagrangian in mass eigenstate basis

g _ . .
f:aur_p = U'Liﬁ.l"# L’*.ij dLjI’I’ n +

V2

e A representation of CP is given via

=

V2

7 Fak r—
dLj"‘,r"uLi;J-uLjﬂf# .

Wi CBWo iy SRy

C-'P g 7 Ea F— g — -~ T -
— ﬁuq_ = _d_[..jﬁlr"#-i“ij HLE'H’# —+ —=uy,; Ir‘“'h* dLjv[‘# .

V2 V2 ""
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Nalve argument:

e The charge current interaction Lagrangian in mass eigenstate basis

g _ . .
f:aur_p = U'Liﬁ.l"# L’*.ij dLjI’I’ n +

V2

e A representation of CP is given via

=

V2

7 Fak r—
dLj"‘,r"uLi;J-uLjﬂf# .

Wi CBWo iy SRy

C-'P g 7 Ea F— g — -~ T -
— ﬁuq_ = _d_[..jﬁlr"#-i“ij HLE'H’# —+ —=uy,; Ir‘“'h* dLjv[‘# .

V2 V2 ""

o Lyy+ # ﬁﬁﬂ if V' is complex 777

Argument more involved (not all phases in CKM matrix are physical)!



Physically quantities must be invariant under a rephasing of the fields
e Rephasing invariants:
1. Moduli of CKM matrix elements | V,; |2.
2. Quartets: Q,i5; = ViV, WV;;
3. Invariants of higher order may in general

be written as functions of 1 and 2:

r r r r 9 1 IE-'
Example: VoV ViV Vi Vai = QTJQ?

(singular cases if some elements vanish )



e The most general CP transformation which leaves invariant all terms

of the Lagrangian, except Ly-+, is given by

Ucpta (t, 7)UL, = eéar0Cal (t, —7),
Ucpii(t, 7)ULp = —e~ gl (t, —7)C 14,
Ucpdy(t, 7)UL, = eékqy0CdL (t, —7)
Ucpdy(t, 7)ULp = —e~%kdl (t, —7)C 142,

UcpWTH(t, }UTP = — e EWIW (L, —7).
e The CP invariance of Ly-+ constrains Vo to satisty

If’;ck — Ei(‘EW'-I—EF: E-:rj ok s ImQaz'ﬂj — III] (I{H 3 :_-T; ?,.-;‘C;) — []



e The most general CP transformation which leaves invariant all terms

s given by

[e—p

of the Lagrangian, except L+,

Ucpua(t, 7)ULp = efar0Cul(t, —7),
Ucplia(t, 7 }UéP = —e %agl(t, -7 )C14Y,
Ucpdy(t, 7)ULp = eékq0CdL (t, —7),
Ucpdy(t, 7)ULp = —e~kdl (t, —7) 0140,
UcpWH (6, 7 ULy = —e SWW - (t, -7

e The CP invariance of Ly-+ constrains Vg s to satisty

ik

Vzkk — Ei(fﬁf-FEk—Ecr]Vﬂkj ImQaz,ﬁj = Im (Vﬂivﬁj V# Vﬁ‘;} — ().

e The CP invariance requires that all rephasing invariant combinations
of CKM matrix elements be real!

(parametrization-independent criterium)



e Parametrization-independent CP violating quantity in Vo

3
Imm.kaiﬂ?vﬁ}] = Jokm Z €ikm€iln (¢,7,k,1=1,2,3)
m,n=1

Jarlskog parameter

All | Im@;5; | are equal (use unitarity relations)

Joren ~ XN A%n = 0(107°)



Jarlskog Criterion in Weak Interaction Basis

e Start with Lagrangian in its initial form in the weak basis.

All gauge currents are diagonal and real

e Consider the most general CP transformation which leaves invariant

the part of the Lagrangian containing the gauge interactions.

e Check whether the CP transformations thus defined implies any

restrictions on the remaining of the Lagrangian.

= Restrictions on £, ..



Jarlskog Criterion in Weak Interaction Basis

e Start with Lagrangian in its initial form in the weak basis.

All gauge currents are diagonal and real

e Consider the most general CP transformation which leaves invariant

the part of the Lagrangian containing the gauge interactions.

e Check whether the CP transformations thus defined implies any
restrictions on the remaining of the Lagrangian.
= Restrictions on £, ..
e CP violation arises as a clash between the CP properties of the gauge

interactions and the mass terms. r r
gauge “ mass

e Condition for CP wviolation in the quark sector of the SM:

Jor &mi&mi&mi&m%&mij 7§ 0, &mfj = mf — m? Jarlskog 1985



e Requirements on the SM to violate CP:
(a) within each quark sector, no mass degeneracy allowed

(b) none of the three mixing angles should be zero or & (Jogy ~ A)

(c) the physical phase should not be 0 or .

e Parametrizations of the CKM matrix

Ld PLS ;b
Veokwu = ed Ves Ve

T T T

td ts th



e Requirements on the SM to violate CP:

(a) within each quark sector, no mass degeneracy allowed

(b) none of the three mixing angles should be zero or & (Jogy ~ A)

(c) the physical phase should not be 0 or .

e Parametrizations of the CKM matrix

Standard parametrization:

—d
C12C3 S12C 3 Sige™"

_ %) 5
Verm = | —512093 — C12523513€"  —C19C93 — 512593513 S93C' 3
S12593 — C12C93.513€™ Ci2S03 — S12C93513€"?  Co3Cls

where Cy; = cos ., Sj; =snby; (i = 1.2,3) and 4 1s the phase necessary for CF violation.

i and S;; can all be choose to be positive and 4 may vary in the range 0 < 4 < 2.



e Hierarchy of charged current processes

d

b

NS

A

"

u

t

O(1)
Arh Aoy 010"
0(10%)
0107

SM flavour problem

S19=0.22 3 S93 = O(1072) > S13 = O(1073)



e Hierarchy of charged current processes SM flavour problem

d u
%’”‘]@t (1)
N kY e A_rh AN 0(10")
] L
0(107)
D(l[]"“']
b t

S19=0.22 3 S93 = O(1072) > S13 = O(1073)

e The Wolfenstein parametrization reflects hierarchy manifestly

S12 = A =0.22; Sy = AN Spae=1s = AX3(p — in)

[ 1- LN A AN(p—in)
Vekm = A — A2 AN + O\

\ AN} (p—in) —AN 1



e Hierarchy in unitarity relations

VidV,e + ViV + ViaVis = 0,
s e S N’
O(A) O(A) O(A%)

Vus ::b +  Ves ?ECr + ts ?E; = 0,
S S S’
O(A%) O(A?) O(A2)

wdVap + VedV, + taVy, — =0.
S—— S—

(p+in) AA3 —AMN3 (1—p—in)AA3



e Hierarchy in unitarity relations

VidV,e + ViV + ViaVis = 0,
s e S N’

O(A) O(A) O(A%)

v;w ::b + I”:::.'5 ?ECr + Es ?E; — []3
S S S’

O(A%) O(A?) O(A2)
VdVey + VedVi + ViaVi, = 0.
S— S—— S—
(p+in) AA3 —AMN3 (1—p—in)AA3

e The angles a, (3, v are rephasing invariants:

Vi
i o= arg(— ) = arg(—Quua),
V,qV
Im }|+—— ud *yh
Ved Vb R VeaV
vtd Jb _ 3= arg(—,—I;) = G'T‘Q'(—thcd)a
cd ' ch rtdbrtﬁ
d
Y p . v= arg(———2) = arg(—Qpud)-

o —
= r r
VeaV,
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Flavour-tagged B decays

In 99% of the B” decays BY and B are distinguishable by their products.

A
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Flavour-tagged B decays

In 99% of the B” decays BY and B are distinguishable by their products.

A
AT
%J{Z_ V *”"7/

B decays into CP eigenstate

Semileptonic decays

In 1% of the BY decays the final state is equally accessible from B and BY.

K
//v J/Y ig\ ﬂ
\; JJVW K t""/ Charmonium decays.

>



CP violation in decay.

Three kinds of phases may arise in transition amplitudes

1. CP-odd phases (also called weak phases).

2. CP-even phases (also called strong phases).

3. Spurious CP-transformation phases.



CP wviolation in decay.

Three kinds of phases may arise in transition amplitudes

1. CP-odd phases (also called weak phases).
2. CP-even phases (also called strong phases).

3. Spurious CP-transformation phases.

+ In SM CP-odd occur only in the mixing matrices of the weak Interaction.

* CP even phases could be induced by possible combinations from an inter-

mediate on-shell state in the decay process, that i1s an absorptive part of an

amplitude (usually rescattering due to strong interaction).



The weak or strong phases of any single term 1s convention dependent,

only differences are observable.
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The weak or strong phases of any single term 1s convention dependent,

only differences are observable.
CP violation in decay: I' (B — F') # T (B‘ — F)
Consider the ansatz: (F | £ | B) = Ae'(¢+9); (F| £ |B) = Ael=9+9)
~ T(B—F)=T(B— F)
New ansatz: (F| L | B) = Ajeil®1+01) 4 Apeild2+02)
(F | £ | B) = Ajel(=91+31) 4 A, ei(—d2+62)

= T'(B— F)—T(B— F) ~ —4A; Aysin (§; — 85) sin (¢ — o)

CP violation in decay (direct CP violation) only in interference between

two amplitudes which differ in both weak and strong phases.



The weak or strong phases of any single term 1s convention dependent,

only differences are observable.

CP violation in decay: I' (B — F') # T (B‘ — F)
Consider the ansatz: (F | £ | B) = Ae'(¢+9); (F | £ | B) = Aell=9+9)

~ TI(B— F)=T(B— F)

New ansatz: (F | £ | B) = Ajei®1401) | A,eilé2+02)
(F | L | E’) = Alei(_¢1+‘51] + Agei(—'ﬁ*:-l-ﬁz]

= T'(B— F)—T(B— F) ~ —4A; Aysin (§; — 85) sin (¢ — o)

Problem: We are interested in the weak phases (¢; — ¢2)

p . " A
They can be measured only if the nonperturbative QCD quantities .-T:

and d; — 09 are known.

= Large hadronic uncertainties



Possible Solution:

Time-dependence of mixing induced asymmetries which are dominated by

one single amplitude:

A(B" — F) = A; = Aeil¢+9)
A (Bﬂ — F) = ‘Elf — Aei{_¢+5}

Nonperturbative QCD parameter 4 and A cancel out.

Golden modes

= Lectures by Alan Schwartz and by Sheldon Stone



Addendum CKM Matrix N quark families

e In general, a unitary N x N matrix have N? parameters.
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i i0 05— i
u; — ey, di — ed;, Vi — elifi=oV .



Addendum CKM Matrix N quark families

e In general, a unitary N x N matrix have N? parameters.
e Redefinition of quark fields: (2N — 1) arbitrary phases
u; — E‘ﬁﬁiuij dj — Eiajdj, VM — Eiiﬂj_éi)ﬂj.

e Physical parameters of Vogear: N° — (2N —1) = (N —1)?

1 1
EN(N — 1) are Euler angles and E(\f — 1)(N — 2) are phases.



Addendum CKM Matrix N quark families

e In general, a unitary N x N matrix have N? parameters.
e Redefinition of quark fields: (2N — 1) arbitrary phases
u; — Eﬁ‘ﬁiui, d; — Eiajdj, Vi, — Eﬁﬂj_éi)ﬁ-'

j‘i

e Physical parameters of Vogear: N° — (2N —1) = (N —1)?

1 1
EN(N — 1) are Euler angles and E(\f — 1)(N — 2) are phases.

e No CP violation possible with two families! (1 angle, 0 phases)

Cabbibo matrix (1963)
cosfl, siné,

Ve = ( —sinf,. cos#, )



Another argument for third quark family

e So-called anomalies break (vital) symmetries of the classical Lagrangean
at the quantum level.

e Theoretical consistency of the SM requires that such anomalies do not
OCCULT.
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e So-called anomalies break (vital) symmetries of the classical Lagrangean
at the quantum level.

e Theoretical consistency of the SM requires that such anomalies do not
OCCULT.

e Necessary condition for the cancellation of possible anomalies is the
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Another argument for third quark family

e So-called anomalies break (vital) symmetries of the classical Lagrangean
at the quantum level.

e Theoretical consistency of the SM requires that such anomalies do not
OCCULT.

e Necessary condition for the cancellation of possible anomalies is the

fact that the number of lepton families has to be equal to the number
of quark families

e Example:

The electric charge of all (!) fermions within one family has to be zero:
QU i) = (—1) x e
Q(ui) = 3 x (+2/3) x [e] = +2Je|

Q(d:) =3 x (=1/3) x [e| = —1]e



e However:

The 7 lepton - as first evidence for the third lepton family - was found
1975 by Martin Perl (SLAC) after (!) the KM paper. (Nobelprize for
Perl 1995)



Strong CP problem

There is an additional gauge-invariant term in the SM Lagrangian:

facp ,



Strong CP problem

There is an additional gauge-invariant term in the SM Lagrangian:

facp ,

The term can be written as a total derivative:

_ 1
TrF, F" = EE”“WTTFWFPC, = J,J"

pv



Strong CP problem

There is an additional gauge-invariant term in the SM Lagrangian:

el
' _ ALLLA T T L

Fagl!

The term can be written as a total derivative:

_ 1
Irk, " = EE“ veeTr |

v

FPG' p— 3# L;,r,u
1
J# = QE,LW,GHTT[GF(@PGCT -+ §[GP3 Gg])]

Jacobi identity
[G,u-.- [Gpa Gr:r” _|_ [Gr:rn [Gvn GPH ‘|‘ [Gp*.l [Gcr-.- Gv” =0

field tensor

Fo, = 8,G% — 9,G% + g, f™GEGe.

s [ 7



Strong CP problem

There is an additional gauge-invariant term in the SM Lagrangian:

foc
,ﬁﬂ 3(3‘.”2 {_#”P{TFHMELFI}OE'H-

Fagl!

The term can be written as a total derivative:

_ 1
'T'P-F:m;F“F = QT‘LLFPHTTF F — 3;: JH

v

e In perturbation theory the term plays no role.

e However, it could give rise to nonperturbative effects due to a nontrivial
topological structure of the QCD vacuum.



Strong CP problem

There is an additional gauge-invariant term in the SM Lagrangian:

focD
Ly = =D € gy 1V P

3272
The term can be written as a total derivative:
' RITLY, 1 1/
I'rF,, F*" = EE‘”’ WTTFWFPC, = d,J"

e The term induces an electric dipole moment to the neutron on which
there is an experimental bound which leads to

fqcp < 1071

e The question of how to explain the tiny value of this parameter is called
the strong CP problem.



e We can express the gauge invariant terms £ 7 FI* and its dual F ] Frv =

T a

Fo, et F L through the color electric :amd magnetic fields E, and B,

FoF ~|E, >+ | Bo|>?— | E. |+ | B.|> underPorT

v

F*F* ~E -B,— —FE,-B, underPorT

ny
Since

P transformation: F,— — F,; B,—B,

—

T transformation: FE,—FE,. B,— —

ou]l

i

Thus, the new term violates P and T symmetry and would thus give
rise to CP violation in the strong interactions.



e Possible solutions of the strong CP problem are the following:

— Adjusting 6 to be smaller than O(10~?) or to be zero by hand is
viewed as highly unnatural.



e Possible solutions of the strong CP problem are the following:

— Adjusting 6 to be smaller than O(10~) or to be zero by hand is
viewed as highly unnatural.

— In any case: fgcp is not an observable

because there are additional SU(2); x U(1) symmetry breaking
contributions of the quark mass matrix.

E‘:'IQ{:.‘.D — 0= HQC‘.D + HQFT
with QQFT — arg det (ﬁirufl&rﬂ)

Thus, 6grr = 0 is not stable under renormalization

(AqrT Teceive some contributions at higher order).



— The m, = 0 solution: The most natural quark to have a vanishing

mass is the up-quark. However, although the mass of the up-quark
is small, it does not appear to be zero.

A study of influence of quark masses on the masses of baryons and

mesons, gives a non-vanishing value for m,,, with running mass at
1 GeV being

mg(1GeV) > m,(1GeV) ~ 5MeV
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— The m, = 0 solution: The most natural quark to have a vanishing
mass is the up-quark. However, although the mass of the up-quark
is small, it does not appear to be zero.

A study of influence of quark masses on the masses of baryons and

mesons, gives a non-vanishing value for m,,, with running mass at
1 GeV being
mg(1GeV) > m,(1GeV) ~ 5MeV

— The Peccei-Quinn symmetry:’

SM is augmented by a U(1l)po symmetry and this symmetry is
spontaneously broken.

The Goldstone boson of the broken U(1)pg symmetry is the axion
for which there is no experimental evidence.

— Spontaneously broken CP: @ = 0 as the leading effect with

with corrections leading to a small deviations from zero.



e Additional contribution from the axial anomaly:

In the real world, the quarks acquire their mass via the electroweak
symmetry breaking,

Lrass = U MEUp + DM Dg + h.c.

— Rewrite the up-quark term:

T 1 | 1, S
cU = ZU(M%e 4 M*NU + EU(Mgm — M5 UR

mass 2

— The U~°U term can be removed by performing the chiral

trans formation
1.5
U, . e '3

(diagonal elements of M m;e')



— However, the current associated to this symmetry transformation
in not conserved:

I =0

m 1

P £ 0

2
(Ui, sUs) = 2miUsysU + 125 K,

Ls
a2 K

Chiral transformation changes the action:

—

2
S S5-% / d*zo" J> = S—i(arg det M) f dizI FF

3272



— However, the current associated to this symmetry transformation
in not conserved:

2
5,i T TT 3 ; 9s =
‘&LJJ = aﬁ(bﬁ’p"‘mbz‘) = 2m;U;vsU + 16?1,21:1#1; - PR £ 0

— Chiral transformation changes the action:

:E rr
S — S-% / d*zo" J> = S—i(arg det M) f d'e Bg;EFF

2 o
99’5 EF. . F]u,v

3272 M

under simultaneous transformations

— Invariance of  L.sf = Loep +

—iZagy®

¢ — e 3% g, m; — e "Mmy, 0 —0—-> a =0—argdet M

(where the sum of «; is over u and d)



e The strong CP problem arises if one insists that renormalization pro-
ceeds in a natural way; i.e. without fine tuning.

e Neither axions (that if exist could make up a significant fraction of
the mass of galaxies) nor other consequences of the strong CP problem
have been discovered so far.



Indirect exploration of higher scales via flavour observables

e Flavour changing neutral current processes like b — s~ or b — s{ti~
directly probe the SM at the one-loop level.

ﬁﬁﬁﬁﬁﬁﬁ
.....

e Indirect search strategy for new degrees of freedom beyond the SM

Direct: Indirect:
Mgysy Msusy ﬁ S
TL%M L Y
‘EP
Photon, Z ~

S
E \ {”‘”
b

to

e High sensitivity for "New Physics' (« electroweak precision data, 10% < 0.1%)

e Large potential for synergy and complementarity between collider (high-pr)

and flavour physics within the search for new physics

= Lectures by U

I Haisch



Flavour problem of New Physics or how do FCNCs hide

New
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5
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¢ SM as effective theory valid up to cut-off scale Apnp
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New
C;

5
L= ﬁﬂ}*{].if.ga + E’Higgﬁ + Z Og( ) + ...

7 Anp
¢ SM as effective theory valid up to cut-off scale Apnp

e Typical example: KV — K9-mixing ©° = (5d)<:
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M MZ, x (5d)2 + New AR x (5d)? = Anp > 10% TeV

(tree-level, generic new physics)



Flavour problem of New Physics or how do FCNCs hide
New

C; 5
L= ﬁt’_}‘ﬂ.uga + E'H-iggs + 2 ;\ Og( ) + ...
i NP
e Typical example: K9 — K9-mixing ©° = (5d)<:
d Xs
S d
M MZ, x (5d)2 + New AR x (5d)? = Anp > 10% TeV

(tree-level, generic new physics)

e Natural stabilisation of Higgs boson mass (hierarchy problem)

(i.e. supersymmetry, little Higgs, extra dimensions) = Ayp = 1TeV
e EVW precision data — little hierarchy problem = Ayp ~3—10TeV

Possible New Physics at the TeV scale has to have a
very non-generic flavour structure



Flavour problem of New Physics or how do FCNCs hide

1{*11, (5)
L= f'(nmje +£’H1g3¢ +Z Og‘ + -
ANP
e Typical example: KV — K9-mixing ©° = (5d)<:
dXE
C d
M MZ, x (5d)2 + New AR x (5d)? = Anp > 10% TeV

(tree-level, generic new physics)

e Natural stabilisation of Higgs boson mass (hierarchy problem)

(i.e. supersymmetry, little Higgs, extra dimensions) = Ayp = 1TeV

Ambiguity of new physics scale from flavour data

(C&Mm/Mw + Cp /Anp ) % O;



More details

=

contribution of the new

(Vi V) / B 4 heavy degrees of freedom

! L]

= b
ﬁ{f(Bd—Bd) — + 11 CNP - ;
6mM2 N A,

S

tay -

tree 'strong + generic flavour

-1 = A2x10*TeV [K]
| .. loop + generic flavour o ]
~1/(16 ) » A=2x10° TeV [K]
“NP ;oETr 4D tree strong + MEFV _ .
~ (Vy Vi) = » A=z5TeV[K&By
s loop + MFV _ ]
~ (VY2 /a6m) 2P TT A20.5 TeV [K & By

Courtesy of Gino Isidori



More details

-

contribution of the new

o A RN heavy d f freed
{I«’Tﬂ} L’}d:}‘i 1 ‘.-"".- EEV}" EgI’EES O ITeado11

! L]

ﬂff‘(Bd—Ed) — " ; +I1 CNP - ;
16 = M~ \ Ay
tree 'strong + generic flavour
o1 =15 > A=2x10*TeV [K]
| .. loop + generic flavour a
~1/(16 ) = A=2x10°TeV [K]
CNP
N (T’I:'wrz;i)j tree strong + NIFVF A=5TeV [K &By]
s A loop + MFV _
~ (VY2 /a6m) 2P TT A20.5 TeV [K & By

Courtesy of Gino Isidori

Formal solution: Minimal flavour violation

The flavour symmetry * SU(3)q, x SU(3)y, x SU(3)p,
is broken by the Yukawa couplings only as in the SM

Yp (3,1,3); Y (3.3,1)



Example: Supersymmetry
e In the general MSSM too many contributions to flavour violation

— CKM-induced contributions from H+, XJF exchanges (quark mixing)

— flavour mixing in the sfermion mass matrix
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e Possible solutions:

— Decoupling: Sfermion mass scale high
(i.e. split supersymmetry)

— Super-GIM: Sfermion masses almost degenerate
(i.e. gauge-mediated supersymmetry breaking)

— Alignment: Sfermion mixing suppressed



Example: Supersymmetry
e In the general MSSM too many contributions to flavour violation

— CKM-induced contributions from H+, XJF exchanges (quark mixing)

— flavour mixing in the sfermion mass matrix

e Possible solutions:

— Decoupling: Sfermion mass scale high
(i.e. split supersymmetry)

— Super-GIM: Sfermion masses almost degenerate
(i.e. gauge-mediated supersymmetry breaking)

— Alignment: Sfermion mixing suppressed

e Dvynamics of flavour — mechanism of SUSY breaking
(BR(b — sv) = 0 in exact supersymmetry)



= Discrimination between various SUSY-breaking mechanism

Goto,Okada,Shindou, Tanaka,arXiv:0711.2935

58S (K x"y) = = 0.03 (50ab™)
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MSUGRA | 28 |U{2]FS ‘
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0.2 bttt . 02 e
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§ Expected Super-B sensitivity (50ab—1)



LHC versus Flavour constraints

Combined Higgs search constraint from ATLAS: arXiv:0901.1502
600 . .

Converted constraints expected from
ATLAS onto the plot by hand.

!-E% C.L. exclusion sensitivity

&0
—_ 55
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- 5 1 El'y
: o B o1t
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0 : : s ' Scenario B ATLAS |
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U. Haisch 0805.2141
2HDM at FPCP 2008)

Courtesy of Adrian Bevan



= CERN workshop on the interplay of flavour and collider physics
Fleischer,Hurth,Mangano see http://mim.home.cern.ch/mim/FlavLHC. html
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5 meetings between 11/2005 and 3/2007
arXiv:0801.1800 [hep-ph] “Collider aspects of flavour physics at high Q"

arXiv:0801.1833 [hep-ph] "B, D and K decays”
arXiv:0801.1826 [hep-ph] “Flavour physics of leptons and dipole moments”

published in EPJC 57 (2008) 1-492
and in Advances in the Physics of Particles and Nuclei, Vol 29, 480p, 2009



= CERN workshop on the interplay of flavour and collider physics
Fleischer,Hurth,Mangano see http://mim.home.cern.ch/mim/FlavLHC. html

Douglas H. Beck
]

Reference book for flavour physics

ADVAMNCES IN THE PHYSICS OF PARTICLES AND NUCLEI 29 in t_he LH C era

I
T. Hurth

M. Mangano
Editors

Flavor in the Era
of the LHC

Reports of the CERN Working Groups

&) Springer

arXiv:0801.1800 [hep-ph] “Collider aspects of flavour physics at high Q"
arXiv:0801.1833 [hep-ph] "B, D and K decays”
arXiv:0801.1826 [hep-ph] “Flavour physics of leptons and dipole moments”

published in EPJC 57 (2008) 1-402
and in Advances in the Physics of Particles and Nuclei, Vol 29, 480p, 2009



Strong interaction in B decays

- short-distance physics
perturbative

long-distance physics
nonperturbative




Strong interaction in B decays

- short-distance physics
perturbative

long-distance physics
nonperturbative

Operator r::rmduct expansion: Factorization of short- and long-distance physics

o u° == Mg 1 C;: effective couplings, < O; >: matrix elements
Hepp = —"—ff > Ci(p, Mheavy) Oi(pe)



Strong interaction in B decays

- short-distance physics
perturbative

long-distance physics
nonperturbative

Operator r::rmduct expansion: Factorization of short- and long-distance physics

o u° == Mg 1 C;: effective couplings, < O; >: matrix elements
Hepp = —"—ff > Ci(p, Mheavy) Oi(pe)

e Noop << mg = my: 1/my expansion allows for separation of effects
w? = mg, myhocp = effective theories (HQET, SCET)



Strong interaction in B decays

+ My

short-distance physics
perturbative
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Operator r::rmduct expansion: Factorization of short- and long-distance physics
o u° == Mg 1 C;: effective couplings, < O; >: matrix elements
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o 117 = A5-p: long-distance hadronic parameters (lattice-QCD , U-spin
symmetry, QCD sum rules, chiral perturbation theory, ... )



Strong interaction in B decays

+ My

- short-distance physics
perturbative

long-distance physics
nonperturbative

Operator r::rmduct expansion: Factorization of short- and long-distance physics

o u° == Mg 1 C;: effective couplings, < O; >: matrix elements
Hepp = —"—ff > Ci(p, Mheavy) Oi(pe)

e Noop << mg = my: 1/my expansion allows for separation of effects
w? = mg, myhocp = effective theories (HQET, SCET)

o 117 = A5-p: long-distance hadronic parameters (lattice-QCD , U-spin
symmetry, QCD sum rules, chiral perturbation theory, ... )

o n?a M3, >> M3 : 'new physics' effects: CPM(My,) + CNeY (M)

= Lectures by Thomas Mannel



Neutrino physics Prologue

e SM assumes neutrinos as massless particles

e Neutrino oscillation experiments have provided the first signal of phyisics beyond the
SM! Phys.Rev.Lett. 81 (1998) 1562
— neutrinos have nonzero mass
— lepton flavour is vioclated

e S0 far there is no experimental data that indicates that lepton number is also broken
(Majorana neutrinos)



Neutrino physics Prologue

e SM assumes neutrinos as massless particles

e Neutrino oscillation experiments have provided the first signal of phyisics beyond the
SM! Phys.Rev.Lett. 81 (1998) 1562

— neutrinos have nonzero mass

— lepton flavour is vioclated

e S0 far there is no experimental data that indicates that lepton number is also broken
(Majorana neutrinos)

Crucial fundamental questions
¢ Majorana, Dirac masses?

¢ How to add neutrino masses to the SM7

For phenomenology of neutrinos and lepton flavour violation
= Lectures by Sacha Davidson



SM picture: massless, hence degenerate neutrinos

= Separate conversation on e,u,7 lepton numbers

e any unitary transformed r state can be taken as mass eigenstates
e processes like p — ey are forbidden to all orders

e assumption of one Higgs-doublet made here



Majorana mass term .
e 50(3,1) is locally isomorphic to SU(2) x SU(2)
Representations (1/2,0) and (0,1/2) correspond to Weyl spinors:

i 1

(1/2,0) x — e"27% | x — e 277y

(0,1/2) x — e~ 397y, y — et3oy

(# rotation angle, n rapidity, 7 = tanhn)



Majorana mass term .
e 50(3,1) is locally isomorphic to SU(2) x SU(2)
Representations (1/2,0) and (0,1/2) correspond to Weyl spinors:
(1/2,0) x — e~ 370y, x — e~ 37y
(0,1/2) x — " 377, x — e* 37y

(# rotation angle, n rapidity, 7 = tanhn)

e Invariant tensor of SL(2,C) MTeM = ¢, €=ioy

Simplest Lorentz-invariant mass term of a single Weyl spinor:

1
L = E'T”-(NTEI + h.c.)



e Lemma: If v transforms under a complex or pseudoreal representation

of an unbroken global or local internal symmetry, a Majorana mass

is forbidden.

Y — Uy unitary transformation x ex — x' UTeUy = x U Uy



e Lemma: If v transforms under a complex or pseudoreal representation

of an unbroken global or local internal symmetry, a Majorana mass

is forbidden.

Y — Uy unitary transformation x ex — x' UTeUy = x U Uy

e Physically, a fermion with a Majorana mass is its own antiparticle

(Majorana fermion) cannot carry an unbroken global or local U(1)

(or, more generally, transform under a complex or pseudoreal

representation) because a particle and an antiparticle must carry

opposite charge.



Dirac mass term

e Way out: One needs to introduce a second Weyl fermion that
transforms under the complex-conjugate representation in order
to construct a mass term.

L=m(ex +h.c)

X — Ux €& — U  Tex— UTUx = ey
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Dirac mass term

e Way out: One needs to introduce a second Weyl fermion that
transforms under the complex-conjugate representation in order
to construct a mass term.

L=m(ex +h.c)

X — Ux €& — U  Tex— UTUx = ey

. . b [ X
e Dirac spinor (0 (Eg* )

L=—mUYyY = —m (XT,—fTE) ( i} é ) ( ;g* )

= m(& ex — xTee®)

e Charge-conjugated spinor

e — o _ [ —€0 0 1 Y B ¢
(2 ZCIGTP _([] E)(l 0)(55) _(EI*)



e Majorana condition Uy = Um
| 1 -
L= —E'mii’_-u’ﬁi’_-u = —=m ()JTa —X E) (

1 )
Em(ffx —x'ex")



How to add neutrino masses to SM 7

First approach: Add right-handed neutrino fields N% and

try to constract a Dirac mass via an additional Yukawa matrix:
'E}"ukﬂwa — _r;f EEEQ*A}?{ + h.c.

Neutrinos get a Dirac mass via the Higgs mechanism like the
other fermions.
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_ 1) Tt 4% ATT
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Neutrinos get a Dirac mass via the Higgs mechanism like the
other fermions.

e Ny is sterile, carries no gauge quantum numbers.

e Since Np is sterile, the gauge symmetry allows a Majorana mass
in addition Lo i nriT ~nri
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How to add neutrino masses to SM 7

First approach: Add right-handed neutrino fields N% and

try to constract a Dirac mass via an additional Yukawa matrix:

_ 1) Tt 4% ATT
ﬁrukﬂmﬂ. - _]'_‘I__.-' LLE@ u'-\IR _I_ h-u'ji i

Neutrinos get a Dirac mass via the Higgs mechanism like the
other fermions.

e Ny is sterile, carries no gauge quantum numbers.

e Since Np is sterile, the gauge symmetry allows a Majorana mass
in addition 1 i ari

L= —EM'E N CN}, + h.c.

e One can suppress the Majorana mass by upgrading lepton number

to a defining symmetry of the extended SM (better B-L)

(SM: lepton number accidential symmetry only)



Second approach: Majorana mass term via dimension-five operator

1 1
OB L _—_O6) ..
M " M? i

SM as low-energy effective field theory: £ = Lg,, +
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G, L e,
R Ve

There is only one dimension-5 operator compatible with gauge

SM as low-energy effective field theory: £ = Lg,, +

symmetries and field content of SM:
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Second approach: Majorana mass term via dimension-five operator

1 1
OB L _—_O6) ..
M " M? i

There is only one dimension-5 operator compatible with gauge

SM as low-energy effective field theory: £ = Lg,, +

symmetries and field content of SM:

Y

M

. ij .2
iT T, T3] CU T v g
L} e¢pCd™ eLy 4 h.c. = Lyre; = ———=—v; Cvj + h.c.

L5 =
2 M

e Lepton number is violated again.

lepton number is only a low-energy accidental symmetry.

e Neutrino masses of order v2/M:
natural explanation why neutrino masses are small



Variation of second approach: Add sterile Ny with large mass Mg

— . 1 . i
L= _LL-FIH EO* A’IR — E:\g ﬂ&rﬂ O:\"R + h.c.



Variation of second approach: Add sterile Ny with large mass Mg
T 'k AT ]' 1 T
L= _LL-FIH EQ *'?\"'R — Ef\'ﬁ ﬂ&rﬂ O;\":R + h.c.

Integrating out heavy neutrinos Ng:

;ij = — LT e¢* — NTMpC + h.c. Ngr = ¢'eC° (T, Mg )T L}
VR
1
L = §L£Eq.ﬁ*{?'l"y(l“yﬂfgleéTEL* + h.e.
o 'UE ) _
= i:_.uaj = M}_T CHE + h.c.

Vi)



Variation of second approach: Add sterile Ny with large mass Mg
T 'k AT ]' 1 T
L= _LL-FIH EQ *'?\"'R — Ef\'ﬁ ﬂ&rﬂ O;\":R + h.c.

Integrating out heavy neutrinos Ng:

—;ﬂf = —L;T,e¢* — NYMpC + h.c. Ng = ¢TeCy (T, Mg" ) L} .
INR
1
L = §L£Eq.ﬁ*{?'l"y(l“yﬂfgleéTEL* + h.e.
vt ol 1
= Lyej = ———1; Cvl + h.e. — = T (T, M1
YT UM R TR 77 = S le(vME)

Seesaw formalism



Third approach: Extend the Higgs sector by a Higgs Iriplet

to allow for a Majorana mass term on the tree level

— Exercises



Dirac versus Majorana neutrinos



Dirac versus Majorana neutrinos

Double-3 decay

P P
n :::‘Si/é _ n
e _
e
v
f\f\,< )
T ﬁx y
a) P

e

b) P

Double-3 decay amplitudes with 2 neutrinos (a) and without neutrinos (b).



Dirac versus Majorana neutrinos

Double-3 decay

P P
n :::‘Si/é _ n
e _
e
v
f\f\,< )
T ﬁx y
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Double-3 decay amplitudes with 2 neutrinos (a) and without neutrinos (b).

Two more CP phases in the MNS-mixing matrix

No freedom to rephase the fields of the Majorana neutrinos



Anyone who keeps the ability to see beauty never grows old !

Franz Kafka
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