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Lecture III:   NR EFT: Apps

• NR effective Lagrangians

• More scattering theory

• Power counting in two-body EFT

• Bound states in EFT



Interacting Fermions  (nucleons or atoms)

Consider NR scattering theory in d=4
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Assume finite range interactions: Effective Range Theory 

+ + ...+

FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
24]
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and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:
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. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)
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Generally two scenarios:

|a| ∼ Λ−1 , |rn| ∼ Λ−1

|a| ! Λ−1 , |rn| ∼ Λ−1

“Natural”

“Unnatural”

A2 = −4πa

M
[1− iap + (ar0/2− a2)p2 + O(p3/Λ3)]
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p4 + . . .]



Now we will reproduce these 
two scenarios using EFT:

(I)     Identify low-energy d.o.f

(II)     Identify the symmetries

(III)   Construct most general EFT 

(IV)   Determine power counting

(V)   Determine parameters (matching to EXP)



Assume: finite range interaction in four space-time dimensions

LEFT = N†
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)
N + C0(N†N)2 +
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+ ...

Interacting Fermions  (nucleons or atoms)

Note:  can choose alternate basis:

C0

(
NTPxN

)† (
NTPxN

)

PxProjection operator onto given channel:
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As before, can solve exactly (formally)
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|a| ∼ Λ−1 , |rn| ∼ Λ−1“Natural”

IMS
n = −i
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This amplitude must match to ERT amplitude!
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A2 = −4πa

M
[1− iap + (ar0/2− a2)p2 + O(p3/Λ3)]Match to:
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Power counting

• propagator

• loop integration

• vertex

1/p2

∫
d4q → p5

C2n∇2n → p2n



|a| ! Λ−1 , |rn| ∼ Λ−1“Unnatural”

Realistic case for nuclear physics!

as ! Λ−1 ∼ m−1
π

NN Scattering
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All scattering lengths are “natural” size for mπ ≥ 350 MeV!

Experiment:

a
1S0
s = −23.714 fm r

1S0
s = 2.73 fm

a
3S1
s = 5.425 fm r

3S1
s = 1.749 fm

as ! Λ−1
QCD !!

Taiwan 6/2008 – p. 44/50

Now we want:
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∞∑
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(A2)n (A2)n ∼ O(pn)
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Need new power counting! C0 ∼ 1
p

!

Clever trick:   subtract pole in D=3 dimensions!

δIn = − Mp2nµ

4π(D − 3)



IPDS
n = In + δIn = −p2n
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by using dimensional regularization and the PDS (power divergence subtraction) scheme.
The PDS scheme involves subtracting from the dimensionally regulated loop integrals not
only the 1/(D − 4) poles corresponding to log divergences, as in MS, but also poles in
lower dimension which correspond to power law divergences at D = 4. The integral In

in eq. (131) has a pole in D = 3 dimensions which can be removed by adding to In the
counterterm

δIn = −
M(ME)nµ

4π(D − 3)
, (142)

so that the subtracted integral in D = 4 dimensions is

IPDS
n = In + δIn = −(ME)n

(
M

4π

)
(µ + ip). (143)

In this subtraction scheme

A = −
M

4π

[
4π

M
∑

C2np2n
+ µ + ip

]−1

. (144)

By performing a Taylor expansion of the above expression, and comparing with eq. (138),
one finds that for µ " 1/|a|, the couplings C2n(µ) scale as

C2n(µ) ∼
4π

MΛnµn+1
. (145)

Eqs. (144,145) imply that the appropriate power counting entails µ ∼ p, C2n(µ) ∼ 1/pn+1.
This is very different than the example of the “natural” scattering length discussed in the
previous section; the strong interactions that give rise to a large scattering length have
significantly altered the scaling of all the operators in the theory. A factor of ∇2n at a
vertex scales as p2n, while each loop contributes a factor of p. The power counting rules for
the case of large scattering length are therefore:

1. Each propagator counts as 1/p2;

2. Each loop integration
∫

d4q counts as p5;

3. Each vertex C2n∇2n contributes pn−1.

We see that this scheme avoids the problems encountered with the choices of the MS
(µ = 0) or momentum cutoff (µ ∼ Λ) schemes. First of all, a tree level diagram with a C0

vertex is O(p−1), while each loop with a C0 vertex contributes C0(µ)M(µ + ip)/4π ∼ 1.
Therefore each term in the bubble sum contributing to A−1 is of order p−1, unlike the case
for µ = 0. Secondly, since µ ∼ p, it makes sense keeping both the µ and the ip in eq.
(143) as they are of similar size, unlike what we found in the µ = Λ case. The PDS scheme
retains the nice feature of MS that powers of q inside the loop.

Starting from the above counting rules (proposed in [24,25] and referred to in the liter-
ature as “KSW” counting) one finds that the leading order contribution to the scattering
amplitude A−1 scales as p−1 and consists of the sum of bubble diagrams with C0 vertices;
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Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.

contributions to the amplitude scaling as higher powers of p come from perturbative inser-
tions of derivative interactions, dressed to all orders by C0. The first three terms in the
expansion are

A−1 =
−C0[

1 + C0M
4π (µ + ip)

] ,
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−C2p2

[
1 + C0M

4π (µ + ip)
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C4p4

[
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4π (µ + ip)
]2

)

, (146)

where the first two correspond to the Feynman diagrams in Fig. 6. The third term, A1,
comes from graphs with either one insertion of C4∇4 or two insertions of C2∇2, dressed to
all orders by the C0 interaction.

Comparing eq. (146) with the expansion of the amplitude eq. (138), the couplings C2n

are related to the low energy scattering data a, rn:
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. (147)
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Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.
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Power counting

• propagator

• loop integration

• vertex

• rg scale

1/p2

∫
d4q → p5

C2n∇2n → pn−1

µ ∼ p



Renormalization group interpretation

β̂0 = µ
d

dµ
Ĉ0 = −Ĉ0(Ĉ0 − 1)

Ĉ0 ≡ −
Mµ

4π
C0 =

µ

µ− 1/aDefine:

Define a dimensionless coupling: Ĉ0 ≡ −
Mµ

4π
C0 =

µ

µ + 1
a

C0(µ) = −4π

M

1
µ + 1

a

The beta function is then given by: β̂ = µ
∂Ĉ0

∂µ
= −Ĉ0

(
Ĉ0 − 1

)

Ĉ01

2
1

Β̂

KSW approach, pionless EFT 

Saturday, February 28, 2009

Trivial IR fixed point: 
“natural case”

Nontrivial UV fixed point: 
“unnatural case”



Why nuclear physics is special!

a−1
s ∼

mπ − m∗
π

mπ
ΛQCD

U of Maryland, 04/10 – p. 35/46

Why is nuclear physics near this UV fixed point??



So what???

All we’ve done is reproduce ERT!

Let’s consider electroweak probes



S-wave NN primer

N : I =
1
2

, S =
1
2

NN :
(

1
2
⊗ 1

2

)

I

=
(
0A ⊗ 1S

)
I

(
1
2
⊗ 1

2

)

S

=
(
0A ⊗ 1S

)
S

Antisymmetric WF:

spin-isospin spectroscopic “field”

S = 1 , I = 0

S = 0 , I = 1

3S1

1S0

tk
sa

deuteron

| d 〉 → t

| np 〉s → s3

| nn 〉s →
1√
2

(s1 + is2)

| pp 〉s →
1√
2

(s1 − is2)



How do we treat the deuteron bound state in EFT?

Recall ERT in 

A2(p) =
4π

M

1
− 1

a + 1
2r0p2 + . . .− ip

3S1

+m2
π

{

D4

(C0)2
−

D2
2

(C0)3

}

+





D(−1)
2

(C0)2
−

2D2C
(0)
0

(C0)3
−

g2
A

f 2

Mγ

4π

D2

(C0)2



 + ζrad
3 ,

ζ4 =





C(−1)
2

(C0)2
−

2 C2 C(0)
0

(C0)3
−

g2
A

f 2

Mγ

4π

C2

(C0)2



 + m2
π

{

E4

(C0)2
−

2 C2 D2

(C0)3

}

, (16)

ζ5 = m2
π

{

C4

(C0)2
−

(C2)2

(C0)3

}

.

ζ1−ζ5 are dimensionless constants. Note that ζ2−ζ5 include factors of mπ and are not simply

short distance quantities. After solving the RGE’s in Eq. (8) one finds that all quantities

in square and curly brackets are separately µ independent. Furthermore, the quantities in

curly brackets vanish at NNLO in the Q expansion due to Eqs. (11) and (12). In Eq. (16)

the order Q radiation pion contributions appear in ζrad
3 given in Eq. (C37) of Appendix C.

At order Q, the effect of radiation pions turns out to be indistinguishable from corrections

coming from contact interactions.

For the 1S0 channel, the location of the pole is determined by solving

−
1

a
+

r0

2
(p∗)2 − ip∗ = 0 . (17)

This fixes γ = −7.88 MeV. Note that adding the shape parameter correction to Eq. (17)

changes the location of the pole by less than 0.01%. The NLO good fit condition in Eq. (13)

relates the constants ζ1 and ζ2,

ζ2 =
γ2

m2
π

ζ1 −
M

4π

g2
AM

8πf 2
log

(

1 +
2γ

mπ

)

, (18)

leaving one new parameter in the fit at NLO. At NNLO, ζ5 = 0 once we impose C4 = C2
2/C0.

This leaves ζ3 and ζ4, which are related by the NNLO good fit condition

ζ3 =
γ2

m2
π

ζ4 +
(Mg2

A

8πf 2

)2 M

4π

m2
π

γ

[

ReLi
( −mπ

mπ + 2γ

)

+
π2

12

]

. (19)

Since ζ1 and ζ4 are multiplied by γ2/m2
π in Eqs. (18) and (19) these conditions basically fix

the values of ζ2 and ζ3. We have chosen to fix ζ1 and ζ4 by performing a weighted least

squares fit to the Nijmegen partial wave analysis [20]. The ranges p = 7 − 80 MeV and

p = 7− 200 MeV were used at NLO and NNLO respectively, with low momentum weighted

more heavily. Using M = 939 MeV, mπ = 137 MeV, gA = 1.25, and f = 131 MeV the

parameters for the 1S0 channel are:

NLO : ζ1 = 0.216; ζ2 = 0.0318;

NNLO : ζ1 = 0.0777; ζ2 = 0.0313; ζ3 = 0.1831; ζ4 = 0.245 . (20)
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FIG. 2. Order Q contact interaction and potential pion graphs for the 1S0 and 3S1 channels.
At this order the first three graphs do not introduce new parameters as explained in the text.

Radiation pion diagrams with order Q contributions are shown in Appendix C.

first equation results in γ = −ip∗, while the other equations give constraints which eliminate

two of the remaining parameters. In order to solve the constraints in Eq. (13) we must allow

the coupling constants C(0)
0 and C(1)

0 to have non-analytic dependence on mπ. Ideally, all mπ

dependence should be explicit in the Lagrangian and the coupling C0 should only depend on

short distance scales. However, the fine tuning that results in the large scattering lengths is

a consequence of a delicate cancellation between long and short distance contributions, and

in order to put the pole in the physical location, one must induce explicit mπ dependence in

the perturbative parts of C0 [16,30]. Eq. (13) will be applied to both S-wave channels. After

imposing these conditions, there is one free parameter at NLO and two free parameters at

NNLO.

III. AMPLITUDES AND PHASE SHIFTS

A. 1S0 channel

In this section, we present the NNLO calculation of the 1S0 phase shift. At NLO the

amplitude involves the diagrams in Fig. 1 calculated in Ref. [9]. Graphs contributing to the

NNLO amplitude include those with one insertion of an order Q operator and those with

two insertions of either a potential pion or order Q0 operator. These graphs are shown in
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Binding energy: B =
γ2

M
= 2.224575(9) MeV
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where Pi is the projection defined in eq. (2.14). The full propagator G is defined as the time
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where B is the deuteron binding energy. By Lorentz invariance, the propagator only depends
on the energy in the center of mass frame, namely

E ≡ E −
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It is convenient to define “irreducible” Green functions as the sum of graphs which do not
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It is convenient to express the X̃ amplitudes as a series in powers of Q; X̃ = X̃(−1) +
X̃(0) + X̃(1) + · · · where Q ∼ γ/mπ is the small expansion parameter in the theory and
superscripts denote the order in Q. The isovector M1 amplitude X̃M1V

has been computed
with EFT previously [4,26] up to NLO. The amplitude starts at Q0 in the power counting,

X̃(0)
M1V

= κ1

(

1 − a(1S0)γ
)

, (9)

where κ1 = (κp−κn)/2 is the isovector nucleon magnetic moment in nuclear magnetons, with

κp = 2.79285, κn = −1.91304. While naively, X̃(0)
M1V

is of order Q0, numerically X̃(0)
M1V

∼ 20

due to the large numerical values of both κ1 and a(1S0).
At order Q1 there are contributions to X̃M1V

from insertions of the effective range pa-
rameter and also contributions from a four-nucleon-one-magnetic operator, described by the
Lagrange density

L = e π/L1

(

NT PiN
)† (

NT P 3N
)

Bi + h.c. , (10)

where B = ∇×A is the magnetic field operator. Pi and P i are the 3S1 and 1S0 spin-isospin
projection operators respectively, with

Pi =
1√
8
σ2σi τ2 , P i =

1√
8
σ2 τ2τi . (11)

The NLO contribution to the amplitude is found to be [4,26]

X̃(1)
M1V

=
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2
κ1ρdγ
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1 − a(1S0)γ
)

−
MNa(1S0)γ2
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1
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)
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
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π/L1 −
κ1π

MN
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



r(1S0)
0

(

µ − 1
a(1S0)

)2 +
ρd

(µ − γ)2











 , (12)

where r0 = 2.73 ± 0.03 fm is the effective range in the 1S0 channel and ρd = 1.764 fm is
effective range in the 3S1 channel. µ is the renormalization scale, and the µ-dependence
of π/L1 yields a renormalization scale independent amplitude, by construction [4,26]. For
convenience we choose µ = mπ. As X̃M1V

is the dominant amplitude for the capture process,
π/L1 = 7.24 fm4 from the unpolarized cross section [4] in eq. (3).

The cross section for any finite incident nucleon momentum has a contribution from
isovector E1 capture. Recently, a N3LO calculation of this amplitude has been performed
[41] for non-zero energy capture. At N3LO there are contributions from the effective range
parameter and from P-wave initial-state interactions which are found to be small. Neglecting
the P-wave initial-state interactions, the amplitude is found to be, up to N3LO

X̃E1V
= −

|p|MN

γ2

(

1 +
1

2
γρd +

3

8
γ2ρ2

d +
5

16
γ3ρ3

d

)

. (13)

Capture from the P-wave introduces the factor of the external nucleon momentum, |p|,
forcing the amplitude to vanish at threshold. The powers of γρd that appears in the ampli-
tude are consistent with the deuteron S-wave normalization factor 1/

√
1 − γρd that arises
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where B is the deuteron binding energy. By Lorentz invariance, the propagator only depends
on the energy in the center of mass frame, namely
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pole gives the wavefunction renormalization Z,
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It is convenient to define “irreducible” Green functions as the sum of graphs which do not
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and it is !40% too large. We expect this error to be sub-

stantially reduced in the NNLO calculation, which includes

among other things the exchange of two potential pions, and

short distance 3S1!
3D1 transitions. In general, it would be

interesting to compare NNLO results for all of the form fac-

tors. Other effects that enter at this order are relativistic cor-

rections, radiation pions, and nucleon form factors.

There remain a number of NLO calculations to be done in

the two-nucleon system, and we are optimistic about their

success. Extending this procedure to the three-body system

and beyond remains a fascinating challenge "20#.
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APPENDIX A: THE GRAPHICAL EXPANSION

OF THE MATRIX ELEMENT OF Jem
µ

1. Irreducible Green’s functions

In this appendix we derive Eq. $3.5% which is central to
our calculation of the deuteron electromagnetic form factors.

We begin with the interpolating field defined in the text

D i&NTPiN , $A1%

where Pi is the projection defined in eq. $2.14%. The full
propagator G is defined as the time ordered product of two of

these D fields:

G$ Ē %' i j"! d4xe!i$Et!p•x%(0"T"D i
†$x %Dj$0 %#"0)

"' i j
iZ$ Ē %

Ē#B#i*
, $A2%

where B is the deuteron binding energy. By Lorentz invari-

ance, the propagator only depends on the energy in the

center-of-mass frame, namely

Ē&E!
p2

4M
#••• , E&$p0!2M %, $A3%

where the ellipsis refers to relativistic corrections to the dis-

persion relation. The numerator Z in Eq. $A2% is assumed to
be smooth near the deuteron pole, and when evaluated at the

pole gives the wave-function renormalization Z,

Z$!B %&Z"!i#dG!1$ Ē %

dE
$
Ē"!B

!1

. $A4%

It is convenient to define ‘‘irreducible’’ Green’s functions

as the sum of graphs which do not fall apart when the graph

is cut between incoming and outgoing nucleons at the four-

fermion vertices proportional to C0 . The irreducible two-

point function is denoted by + , and has the expansion shown
in Fig. 1. One can see graphically $Fig. 6% that the relation
between G and + is

G"
+

1#iC0+
. $A5%

It follows that

+" Ē"!B "
i

C0
,

1

+2

d+

dE
%
Ē"!B

"
i

Z
. $A6%

In general, unphysical quantities such as Z , C0 , the deu-

teron wave function, etc. will depend on the renormalization

scale , , while S-matrix elements will be , independent.

In order to compute the matrix element of the electromag-

netic current between two deuteron states, we first define the

three-point function

Gi j
,$ Ē ,Ē!,q%"! d4x d4y e!i$Ex0!p•x%ei$E!y0!p!•y%

$(0"T"D i
†$x %Jem

, $0 %Dj$y %#"0), $A7%

where q,"(E!!E ,p!!p) is the photon momentum. G, is

related to the desired form factor via the LSZ formula

(p!, j "Jem
, "p,i)"Z"G!1$ Ē %G!1$ Ē!%Gi j

,$ Ē ,Ē!,q%# Ē ,Ē!→!B ,

$A8%

where G(Ē) is defined in Eq. $A2%. It is convenient to reex-
press this formula in terms + and the irreducible three-point

function, which we call -,. It is easy to see graphically $Fig.
7% that the relation between G, and -, is

Gi j
,$ Ē ,Ē!,q%"

- i j
,$ Ē ,Ē!,q%

"1#iC0+$ Ē %#"1#iC0+$ Ē!%#

"
- i j

,$ Ē ,Ē!,q%G$ Ē %G$ Ē!%

+$ Ē %+$ Ē!%
. $A9%

Making use of this relation and Eqs. $A5%,$A6%,$A8% allows
us to reexpress the matrix element of the current in terms of

-, and +:

(p!, j "Jem
, "p,i)"Z#- i j

,$ Ē ,Ē!,q%

+$ Ē %+$ Ē!%
$
Ē ,Ē!→!B

"i#- i j
,$ Ē ,Ē!,q%

d+$ Ē %/dE
$
Ē ,Ē!→!B

. $A10%

FIG. 6. The expansion of of the full two-point function G in

terms of the irreducible two-point function + .

FIG. 7. The expansion of full three-point function G, in terms

of the irreducible two- and three-point functions + , -,.
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It is convenient to express the X̃ amplitudes as a series in powers of Q; X̃ = X̃(−1) +
X̃(0) + X̃(1) + · · · where Q ∼ γ/mπ is the small expansion parameter in the theory and
superscripts denote the order in Q. The isovector M1 amplitude X̃M1V

has been computed
with EFT previously [4,26] up to NLO. The amplitude starts at Q0 in the power counting,

X̃(0)
M1V

= κ1

(

1 − a(1S0)γ
)

, (9)

where κ1 = (κp−κn)/2 is the isovector nucleon magnetic moment in nuclear magnetons, with

κp = 2.79285, κn = −1.91304. While naively, X̃(0)
M1V

is of order Q0, numerically X̃(0)
M1V

∼ 20

due to the large numerical values of both κ1 and a(1S0).
At order Q1 there are contributions to X̃M1V

from insertions of the effective range pa-
rameter and also contributions from a four-nucleon-one-magnetic operator, described by the
Lagrange density

L = e π/L1

(

NT PiN
)† (

NT P 3N
)

Bi + h.c. , (10)

where B = ∇×A is the magnetic field operator. Pi and P i are the 3S1 and 1S0 spin-isospin
projection operators respectively, with

Pi =
1√
8
σ2σi τ2 , P i =

1√
8
σ2 τ2τi . (11)

The NLO contribution to the amplitude is found to be [4,26]

X̃(1)
M1V

=
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2
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−
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 , (12)

where r0 = 2.73 ± 0.03 fm is the effective range in the 1S0 channel and ρd = 1.764 fm is
effective range in the 3S1 channel. µ is the renormalization scale, and the µ-dependence
of π/L1 yields a renormalization scale independent amplitude, by construction [4,26]. For
convenience we choose µ = mπ. As X̃M1V

is the dominant amplitude for the capture process,
π/L1 = 7.24 fm4 from the unpolarized cross section [4] in eq. (3).

The cross section for any finite incident nucleon momentum has a contribution from
isovector E1 capture. Recently, a N3LO calculation of this amplitude has been performed
[41] for non-zero energy capture. At N3LO there are contributions from the effective range
parameter and from P-wave initial-state interactions which are found to be small. Neglecting
the P-wave initial-state interactions, the amplitude is found to be, up to N3LO

X̃E1V
= −

|p|MN
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1 +
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2
γρd +

3

8
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. (13)

Capture from the P-wave introduces the factor of the external nucleon momentum, |p|,
forcing the amplitude to vanish at threshold. The powers of γρd that appears in the ampli-
tude are consistent with the deuteron S-wave normalization factor 1/

√
1 − γρd that arises

5

(    )

WF renormalization:

Interpolating field:



Figure 7: The leading order contribution to np → dγ. Solid lines denote nucleons, wavy lines
denote photons. The photon coupling is through the nucleon anomalous magnetic moment oper-
ator in LB; the resummed unmarked vertex is the C0 interaction. The crossed circle represents
and insertion of the deuteron interpolating field Di. The bubble chain without photon insertions
(not shown) is used to compute the wave function renormalization Z, and to fit C0 to get the
correction deuteron binding energy. See [26–28].

At next-to-leading order (“NLO”) one needs to sum all relevant diagrams involving a
single insertion of a C2 vertex (that is, a 2-derivative contact interaction, whose value is fit
to the experimental effective range in NN scattering) for both the 1S0 and 3S1 channels, as
in Fig. 8.

However this is not all. At the same order one finds a new contact interaction which
cannot be fit to NN scattering data. It is a 2-body interaction with a magnetic photon
attached, involving a new coupling constant L1:

LL1
= eL1(N

T PiN)†(NT P3N)Bi . (152)

A gauge field is power counted the same as a derivative, and so the B field counts as
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4.3.4 Few nucleon systems

Extension of the pion-less effective theory to systems with more than two nucleons is a very
elegant and interesting subject, pioneered by Bedaque, Hammer and Van Kolck [31–33] (for
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It is convenient to express the X̃ amplitudes as a series in powers of Q; X̃ = X̃(−1) +
X̃(0) + X̃(1) + · · · where Q ∼ γ/mπ is the small expansion parameter in the theory and
superscripts denote the order in Q. The isovector M1 amplitude X̃M1V

has been computed
with EFT previously [4,26] up to NLO. The amplitude starts at Q0 in the power counting,
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where κ1 = (κp−κn)/2 is the isovector nucleon magnetic moment in nuclear magnetons, with

κp = 2.79285, κn = −1.91304. While naively, X̃(0)
M1V

is of order Q0, numerically X̃(0)
M1V

∼ 20

due to the large numerical values of both κ1 and a(1S0).
At order Q1 there are contributions to X̃M1V

from insertions of the effective range pa-
rameter and also contributions from a four-nucleon-one-magnetic operator, described by the
Lagrange density
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where B = ∇×A is the magnetic field operator. Pi and P i are the 3S1 and 1S0 spin-isospin
projection operators respectively, with

Pi =
1√
8
σ2σi τ2 , P i =

1√
8
σ2 τ2τi . (11)

The NLO contribution to the amplitude is found to be [4,26]
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where r0 = 2.73 ± 0.03 fm is the effective range in the 1S0 channel and ρd = 1.764 fm is
effective range in the 3S1 channel. µ is the renormalization scale, and the µ-dependence
of π/L1 yields a renormalization scale independent amplitude, by construction [4,26]. For
convenience we choose µ = mπ. As X̃M1V

is the dominant amplitude for the capture process,
π/L1 = 7.24 fm4 from the unpolarized cross section [4] in eq. (3).

The cross section for any finite incident nucleon momentum has a contribution from
isovector E1 capture. Recently, a N3LO calculation of this amplitude has been performed
[41] for non-zero energy capture. At N3LO there are contributions from the effective range
parameter and from P-wave initial-state interactions which are found to be small. Neglecting
the P-wave initial-state interactions, the amplitude is found to be, up to N3LO
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Capture from the P-wave introduces the factor of the external nucleon momentum, |p|,
forcing the amplitude to vanish at threshold. The powers of γρd that appears in the ampli-
tude are consistent with the deuteron S-wave normalization factor 1/
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1 − γρd that arises
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Note that assuming rn ∼ 1/Λ, these expressions are consistent with the scaling law in eq.
(145).

4.3.3 Beyond the effective range expansion

So far, we have developed an elaborate machinery to just reproduce the effective range
expansion! The payoff comes when one includes electromagnetic and weak interactions.
The example I will briefly describe the application of the pion-less effective theory to here
is the application of the pion-less effective theory to radiative capture process np → dγ. At
leading order, the ingredients to the calculation are the following:

i. One starts with the the nucleon kinetic two-nucleon C0 interaction for the 3S1 channel,
written as

L = . . . − C0(N
T PiN)†(NT PiN) , (148)

where N is the nucleon doublet, and Pi is the projection operator onto the 3S1 channel:

Pi =
1√
8
σ2σiτ2 , TrPiPj =

1

2
δij , (149)

where the σi act on spin and the τi act on isospin.

ii. One uses the convenient interpolating field Di(x) ≡ NT PiN(x) to be the operator
that creates a deuteron at the point x. The coupling C0 can be fixed by ensuring
that the pole in A−1 occurs at the deuteron binding energy. The leading order wave
function normalization Z is extracted by looking at the residue at the pole. (

√
Z is

just the amplitude for our operator Di to create a physical deuteron.)

iii. np → dγ occurs by emitting a magnetic photon, and so one needs to include in the
Lagrangian the anomalous magnetic moment interaction of the nucleons:

LB =
e

2MN
N †(κ0 + κ1τ3)σ · BN , (150)

where κ0 = 1
2(κp + κn) and κ1 = 1

2(κp − κn) are the isoscalar and isovector nucleon
magnetic moments with κp = 2.79, κn = −1.91.

iv. Then at leading order one sums up the bubble chain with one insertion of the magnetic
moment operator, as shown in Fig. 7.

From these graphs one finds the capture cross section

σ =
8παγ5κ2

1a
2
0

vM5
N

(
1 −

1

γa0

)2

, (151)

where α is the fine structure constant and v is the magnitude of the neutron velocity (in the
proton rest frame), a0 = −23.714 ± .013 fm is the 1S0 scattering length and γ ≡

√
MNB,

where b is the deuteron binding energy. This agrees with old results of Bethe and Longmire
when terms in their expression involving the effective range (which are higher order in our
expansion) are neglected.
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Figure 9: An additional graph at NLO including an insertion of the L1 operator. From ref. [28],
courtesy of M. Savage.
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Figure 10: Cross section for γd → np breakup as a function of photon energy Eγ. The dashed
line is the theoretical calculation of ref. [29], as is this figure, courtesy of G. Rupak. The data
are from ref. [30]

the one-parameter spread in results. The figure also makes it clear that by appropriately
choosing the value for this 3-body force, the NLO EFT calculation will agree very well with
experiment, lying at the closest approach of the solid curve to the red cross. This plot is an
excellent advertisement for why effective field theory is a good tool for low energy nuclear
physics.

4.4 Including pions in the EFT for nuclear physics

The original suggestion for applying effective field theory to nuclear physics was due to
Weinberg [35,36]. His idea was use the chiral Lagrangian for meson-nucleon interactions dis-
cussed in the previous lecture, supplemented with multi-nucleon operators. Realizing that
the system was nonperturbative, he advocated performing a straightforward chiral expan-
sion of the nucleon-nucleon potential to the desired order, and then solving the Shrödinger
equation using that potential. In Feynman diagrams, latter step is equivalent to summing
up ladder diagrams where the rungs of the ladder are interactions between the nucleons via

viewed with low resolution. So even if every model had included no fundamental 3-body interaction, since they
all have different 2-body interactions at short distance, they would still be scattered over the Phillips line.
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Figure 8: The graphs contributing to np → dγ at NLO. The black square corresponds to an
insertion of a C2 interaction, the circle to the nucleon anomalous magnetic moment, and the
resummed unmarked vertex to the C0 interaction. The last graph is the contribution to wave
function renormalization at this order. Figure from ref. [28].

a more recent review, see [34]). A fascinating result of the analysis is that Nd scattering in
the j = 3

2 channel is well described at leading order by summing up two-body interactions,
along the lines described in the previous section. However in the j = 1

2 channel, already at
leading order a 3-body contact interaction is needed to renormalize the scattering amplitude.
Furthermore, the strength of this interaction exhibited limit-cycle behavior as a function of
the momentum cutoff.

Unfortunately, I do not have time to discuss it, but I did want to show one plot from
the review, showing the so-called Phillips line, in Fig. 11. Plotted here is a plot of the j = 1

2
nd scattering length, versus the triton binding energy in MeV. Plotted as black dots are
the results from numerous potential models. They evidently fall along a rough curve, called
the “Phillips line”. Also plotted are the LO and NLO results from the pion-less effective
field theory; these calculations require a counterterm for a 3-body operator at leading order
for the scattering amplitude to be made finite. The residual finite part of this interaction
must therefore be fit to data. In Fig. 11 the EFT results are shown for a continuous
range of this coupling constant for the 3-body force, generating curves which lie close to
the black dots. The interpretation is evident: without realizing it, the different potential
models have assigned different, and essentially random values to the 3-body force7, hence

7Note that sequential 2-body interactions at short distance can be equivalent to a 3-body interaction when
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Figure 9: An additional graph at NLO including an insertion of the L1 operator. From ref. [28],
courtesy of M. Savage.

2 4 6 8 10

0.5

1

1.5

2

2.5

E! (MeV)

" (mb)

Figure 10: Cross section for γd → np breakup as a function of photon energy Eγ. The dashed
line is the theoretical calculation of ref. [29], as is this figure, courtesy of G. Rupak. The data
are from ref. [30]

the one-parameter spread in results. The figure also makes it clear that by appropriately
choosing the value for this 3-body force, the NLO EFT calculation will agree very well with
experiment, lying at the closest approach of the solid curve to the red cross. This plot is an
excellent advertisement for why effective field theory is a good tool for low energy nuclear
physics.

4.4 Including pions in the EFT for nuclear physics

The original suggestion for applying effective field theory to nuclear physics was due to
Weinberg [35,36]. His idea was use the chiral Lagrangian for meson-nucleon interactions dis-
cussed in the previous lecture, supplemented with multi-nucleon operators. Realizing that
the system was nonperturbative, he advocated performing a straightforward chiral expan-
sion of the nucleon-nucleon potential to the desired order, and then solving the Shrödinger
equation using that potential. In Feynman diagrams, latter step is equivalent to summing
up ladder diagrams where the rungs of the ladder are interactions between the nucleons via

viewed with low resolution. So even if every model had included no fundamental 3-body interaction, since they
all have different 2-body interactions at short distance, they would still be scattered over the Phillips line.
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Also achieved by model calculations, however EFT provides:

A systematic procedure for computing 
corrections to the desired accuracy in the 

most economical way.



Dibaryon (Dimer) method

It is convenient to express the X̃ amplitudes as a series in powers of Q; X̃ = X̃(−1) +
X̃(0) + X̃(1) + · · · where Q ∼ γ/mπ is the small expansion parameter in the theory and
superscripts denote the order in Q. The isovector M1 amplitude X̃M1V

has been computed
with EFT previously [4,26] up to NLO. The amplitude starts at Q0 in the power counting,

X̃(0)
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= κ1

(

1 − a(1S0)γ
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, (9)

where κ1 = (κp−κn)/2 is the isovector nucleon magnetic moment in nuclear magnetons, with

κp = 2.79285, κn = −1.91304. While naively, X̃(0)
M1V

is of order Q0, numerically X̃(0)
M1V

∼ 20

due to the large numerical values of both κ1 and a(1S0).
At order Q1 there are contributions to X̃M1V

from insertions of the effective range pa-
rameter and also contributions from a four-nucleon-one-magnetic operator, described by the
Lagrange density

L = e π/L1

(

NT PiN
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NT P 3N
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Bi + h.c. , (10)

where B = ∇×A is the magnetic field operator. Pi and P i are the 3S1 and 1S0 spin-isospin
projection operators respectively, with
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The NLO contribution to the amplitude is found to be [4,26]
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where r0 = 2.73 ± 0.03 fm is the effective range in the 1S0 channel and ρd = 1.764 fm is
effective range in the 3S1 channel. µ is the renormalization scale, and the µ-dependence
of π/L1 yields a renormalization scale independent amplitude, by construction [4,26]. For
convenience we choose µ = mπ. As X̃M1V

is the dominant amplitude for the capture process,
π/L1 = 7.24 fm4 from the unpolarized cross section [4] in eq. (3).

The cross section for any finite incident nucleon momentum has a contribution from
isovector E1 capture. Recently, a N3LO calculation of this amplitude has been performed
[41] for non-zero energy capture. At N3LO there are contributions from the effective range
parameter and from P-wave initial-state interactions which are found to be small. Neglecting
the P-wave initial-state interactions, the amplitude is found to be, up to N3LO
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FIG. 1. The dressed dibaryon propagator. The bare dibaryon propagator is dressed by nucleon
bubbles to all orders. Each diagram counts as Q−2 in the power-counting scheme.

where µ is the renormalization scale. As far as power-counting is concerned y ∼
√

Q and
∆ ∼ Q2. Therefore, the bare dibaryon propagator counts as Q−2, as do arbitrary insertions
of nucleon bubbles. Hence the bubbles must be summed to all orders as in Fig. 1. The
dibaryon propagator dressed with nucleon bubbles, D(3S1)(E), as a function of center-of-
mass energy E, is

D(3S1)(E) =
4π

MNy2

i

µ + 4π
MNy2 ∆ − 4π

MN y2 E + i
√

MNE
. (7)

The LO scattering amplitude is then

A−1 =
4π

MN

1

− 1
a(3S1)

+ 1
2r

(3S1)MNE − i
√

MNE
, (8)

which is simply the effective range expansion, neglecting the shape parameter and higher
contributions.

To satisfy oneself that the Lagrange density in eq. (5) reproduces the scattering ampli-
tude that one would obtain by writing down all possible four-nucleon operators, as is done
in EFT(π/), it is sufficient to compare the scattering amplitude in the two theories. The
exchange of a fully-dressed dibaryon between nucleons is identical to the exact bubble sum,

up to terms beyond the effective range,1 i.e. the shape parameter r(3S1)
1 , and higher. To

include the shape parameter, for instance, one includes a term in the Lagrange density,

Lshape = −
2MNr(3S1)

1

r(3S1)
[OEtj ]

†
[

OEtj
]

. (9)

This operator is suppressed by Q3 relative to ∆ and therefore gives rise to a perturbative
correction to the LO amplitude via the right diagram in Fig. 2. The Q3 suppressed amplitude
is thus

A2 = −
4π

MN
r(3S1)
1 (MNE)2 1

(

− 1
a(3S1) + 1

2r
(3S1)MNE − i

√

MNE
)2 . (10)

The Lagrange density in eq. (9) demonstrates a general feature of transforming between a
theory written in terms of only four-nucleon operators and one written in terms of dibaryons.
The “rule” for replacing a nucleon bi-linear with a dibaryon field is, up to numerical factors,

1Defined via p cot δ = − 1
a + 1

2r|p|2 + r1|p|4 + ...

4

FIG. 2. Feynman diagrams that contribute to NN scattering. The thick solid lines denote the
dibaryon field, while the single lines denote the nucleon field. The black box is an insertion of the
shape parameter correction that is suppressed by Q3 compared to the LO diagram.

NT P jN →
1

√

MNr(3S1)
tj , NT P

a
N →

1
√

MNr(1S0)
sa , (11)

where P
a

is the projector for the 1S0 channel and sa is the 1S0 dibaryon. This is important
to keep in mind as it introduces factors of

√
Q into the coefficients of operators. The power

counting with the effective range scaling as 1/Q and a Lagrange density written in terms of
dibaryon fields will be denoted by dEFT(π/).

In the most general Lagrange density that describes interactions in or with the 1S0 and
3S1 channels, all higher dimension operators involve couplings to the dibaryon fields, and
not to the nucleon bilinear NT P jN in the 3S1 channel or NT P aN in the 1S0 channel. The
simplest example of this is perhaps the 3S1 − 3D1 channels. The Lagrange density describing
mixing is, up to NLO
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2
√

MNr(3S1)
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]

, (13)

and the ellipses denote operators involving more powers of the center-of-mass energy E.
This leads to a mixing parameter ε1 at NLO of
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[
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4 E
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√
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Writing this expression in terms of the asymptotic 3S1 to 3D1 ratio ηsd, defined by

ηsd = − tan (ε1) , tan (2ε1) =
tan (2ε1)

sin
(

δ0 − δ2

) , (15)

evaluated at the deuteron pole, |p| = iγ,

ε1 = ηsd

(

MNE

γ2

)
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The ellipses denote the contribution from the C(sd)
4 and higher operators.
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Recovers ERT!
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Example: deuteron weak processes
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B. Weak Interactions

The effective lagrangians for charged and neutral current weak interactions, in terms of
neutrino, nucleon, and meson fields, are given by

LCC = −
GF√

2
lµ+J−

µ + h.c. , (9)

LNC = −
GF√

2
lµZJZ

µ , (10)

where the lµ is the leptonic current and Jµ is the hadronic current. For ν-d and ν-d scattering,

lµ+ = νγµ(1 − γ5)e , lµZ = νγµ(1 − γ5)ν . (11)

The hadronic currents can be decomposed into vector and axial-vector contributions

J−
µ = V −

µ − A−
µ = (V 1

µ − A1
µ) − i(V 2

µ − A2
µ) ,

JZ
µ = −2 sin2 θW V S

µ + (1 − 2 sin2 θW )V 3
µ − AS

µ − A3
µ , (12)

where the superscripts represent isovector components (with S representing isoscalar terms)
and, later, the currents will be labeled by the number of nucleons involved.

In a next-to-leading order (NLO) calculation, the electron mass me contributions to
the matrix elements are counted as higher order, along with contributions to the current
proportional to the momentum transfer qµ since qµlµ = 0 up to NLO. Weak-couplings to pion
fields are also higher order and are neglected here. The non-relativistic one-body isoscalar
currents are given by
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I. INTRODUCTION

Recent results from the Sudbury Neutrino Observatory (SNO) [1] highlight the impor-
tance of a precise determination of neutrino-deuteron breakup reaction cross-sections. The
three reactions used by SNO to detect the 8B solar flux are

νe + d → p + p + e− (CC),
νx + d → p + n + νx (NC),
νx + e−→ νx + e− (ES).

The charged current reaction (CC) is sensitive exclusively to electron-type neutrinos, while
the neutral current reaction (NC) is equally sensitive to all active neutrino flavors (x =
e, µ, τ). The elastic scattering reaction (ES) is sensitive to all active flavors as well, but
with reduced sensitivity to νµ and ντ . Detection of these three reactions allows SNO to
determine the electron and non-electron active neutrino components of the solar flux, and
it is then obvious that the cross sections for these three reactions are important inputs for
SNO. However, while the ES cross section is very well determined, the CC and NC cross
sections have never been tested to high precision.

Theoretically, the complications in the CC and NC processes are due to two-body currents
which are irreducible interactions involving leptonic external currents and two nucleons.
The two-body currents can be calculated either through meson exchange diagrams aided
by modeling of any unknown weak couplings, or can be parameterized using effective field
theory (EFT). In both cases, experimental data from some other process are required in
order to calibrate the unknowns in the problem. In EFT, this calibration procedure can be
described in an economic and systematic way. The reason is that, up to next-to-next-to-
leading order (NNLO) in EFT, all low-energy weak interaction deuteron breakup processes
depend on a common isovector axial two-body current, parameterized by L1,A [2]. This
implies that a measurement of any one of the breakup processes could be used to fix L1,A.

In this paper, we will briefly review the EFT approach and discuss experiments that could
be used to fix L1,A. Then we present the constraint on L1,A using reactor νd scattering.

II. EFFECTIVE FIELD THEORY

For the deuteron breakup processes used to detect solar neutrinos, where Eν < 15 MeV,
the typical momentum scales in the problem are much smaller than the pion mass mπ(" 140
MeV). In these systems pions do not need to be treated as dynamical particles since they only
propagate over distances ∼ 1/mπ, much shorter than the scale set by the typical momentum
of the problem. Thus the pionless nuclear effective field theory, EFT(π/) [3, 4, 5, 6, 7, 8], is
applicable.

In EFT(π/), the dynamical degrees of freedom are nucleons and non-hadronic external
currents. Massive hadronic excitations such as pions and the delta resonance are “integrated
out,” resulting in contact interactions between nucleons. Nucleon-nucleon interactions are
calculated perturbatively with the small expansion parameter

Q ≡
(1/a, γ, p)

Λ
(1)

which is the ratio of the light to heavy scales. The light scales include the inverse S-wave
nucleon-nucleon scattering length 1/a(<∼ 12 MeV) in the 1S0 channel, the deuteron binding

2

This interaction leads to interactions in the di-baryon formulation of EFT(π/) of the form

δL = −gW
gA

2
N †σzτ 3N −

gW l1,A

2M
√

r1r3

[

t†3s3 + h.c.
]

+ ... , (30)

where the ellipses denotes terms higher order in EFT(π/), and gA = 1.26 is the nucleon axial
coupling constant. We note that due to the nature of the interaction, weak “Landau-levels”
are not present in this system.

The cross sections for the weak-disintegration of the deuteron and other two-nucleon
weak processes depend upon the dimensionless coefficient l1,A. These processes have been
studied extensively by Butler and Chen [47, 48] and also by Butler, Chen and Kong [49] and
our (renormalization-group invariant) l1,A is related to the constants they introduce. The
coefficient of the four-nucleon operator in EFT(π/), π/L1,A, is related to l1,A via

l1,A = −
2(µ − γ)

C(1S0)
0 (µ)

[

π/L1,A(µ) − πgA

(

M

2π
C(1S0)

2 (µ) +
r3

(µ − γ)2

) ]

, (31)

where C(1S0)
0,2 (µ) are the coefficients of the zero- and two-derivative strong interaction opera-

tors in EFT(π/). Numerically, eq. (31) reduces to

l1,A = −13.4 + 0.27 π/L1,A , (32)

when the RG-scale µ = mπ is chosen, and where π/L1,A is in units of fm3. Calculations
have been done in which a chiral expansion of the weak currents are performed in a manner
consistent with Weinberg’s power-counting [50]. Matrix elements of these operators are taken
between wave-functions generated with the best modern NN potentials [13]. This method is
somewhat ad hoc, but it has been demonstrated to be convergent where it has been tested. A
calculation of tritium β-decay in such a framework leads to [13] π/L1,A(mπ) = +4.2±0.1 fm3.
Chen, Heeger and Robertson [11] have surveyed the experimental and theoretical constraints
on π/L1,A(mπ) and have also provided a model-independent determination of this quantity
from the SNO and Super-Kamiokande data, finding π/L1,A = +4.0 ± 6.3 fm3.

The cross sections for the processes νd → νnp, νd → νnp, and νd → e+nn are all
given in terms of π/L1,A(mπ), in Refs. [47, 48, 49], and analytic expressions for each can be
found there. As these expressions are quite complicated, we do not reproduce them here.
Numerical values of the cross sections for these processes can be found in Refs. [47, 48, 49].
As an example, at Eν,ν = 10 MeV the cross sections are, in units of 10−42 cm2,

σ(νxd → νxnp) = 1.76 + 0.056 l1,A , σ(νxd → νxnp) = 1.66 + 0.052 l1,A

σ(νed → e−pp) = 4.07 + 0.12 l1,A , σ(νed → e+nn) = 1.93 + 0.059 l1,A , (33)

where x = e, µ, τ . Thus, a determination of l1,A at the ∼ 10% level translates into an
uncertainty in these cross sections at the few percent level.

In the presence of a background weak field of the form given in eqs. (29) and (30), the
Iz = 0 component of the 1S0 channel mixes with the m = 0 component of the 3S1 channel,
as is the case in the presence of a background magnetic field. The energy-eigenvalues of
1S0(Iz = 0) −3S1(m = 0) NN system in a finite volume with this weak field are solutions to

[

p cot δ1 −
S1 + S2

2πL

] [

p cot δ3 −
S1 + S2

2πL

]

=

[

gW l1,A

4
−

S1 − S2

2πL

]2

, (34)
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This interaction leads to interactions in the di-baryon formulation of EFT(π/) of the form

δL = −gW
gA

2
N †σzτ 3N −

gW l1,A

2M
√

r1r3

[

t†3s3 + h.c.
]

+ ... , (30)

where the ellipses denotes terms higher order in EFT(π/), and gA = 1.26 is the nucleon axial
coupling constant. We note that due to the nature of the interaction, weak “Landau-levels”
are not present in this system.

The cross sections for the weak-disintegration of the deuteron and other two-nucleon
weak processes depend upon the dimensionless coefficient l1,A. These processes have been
studied extensively by Butler and Chen [47, 48] and also by Butler, Chen and Kong [49] and
our (renormalization-group invariant) l1,A is related to the constants they introduce. The
coefficient of the four-nucleon operator in EFT(π/), π/L1,A, is related to l1,A via

l1,A = −
2(µ − γ)

C(1S0)
0 (µ)

[

π/L1,A(µ) − πgA

(

M

2π
C(1S0)

2 (µ) +
r3

(µ − γ)2

) ]

, (31)

where C(1S0)
0,2 (µ) are the coefficients of the zero- and two-derivative strong interaction opera-

tors in EFT(π/). Numerically, eq. (31) reduces to

l1,A = −13.4 + 0.27 π/L1,A , (32)

when the RG-scale µ = mπ is chosen, and where π/L1,A is in units of fm3. Calculations
have been done in which a chiral expansion of the weak currents are performed in a manner
consistent with Weinberg’s power-counting [50]. Matrix elements of these operators are taken
between wave-functions generated with the best modern NN potentials [13]. This method is
somewhat ad hoc, but it has been demonstrated to be convergent where it has been tested. A
calculation of tritium β-decay in such a framework leads to [13] π/L1,A(mπ) = +4.2±0.1 fm3.
Chen, Heeger and Robertson [11] have surveyed the experimental and theoretical constraints
on π/L1,A(mπ) and have also provided a model-independent determination of this quantity
from the SNO and Super-Kamiokande data, finding π/L1,A = +4.0 ± 6.3 fm3.

The cross sections for the processes νd → νnp, νd → νnp, and νd → e+nn are all
given in terms of π/L1,A(mπ), in Refs. [47, 48, 49], and analytic expressions for each can be
found there. As these expressions are quite complicated, we do not reproduce them here.
Numerical values of the cross sections for these processes can be found in Refs. [47, 48, 49].
As an example, at Eν,ν = 10 MeV the cross sections are, in units of 10−42 cm2,

σ(νxd → νxnp) = 1.76 + 0.056 l1,A , σ(νxd → νxnp) = 1.66 + 0.052 l1,A

σ(νed → e−pp) = 4.07 + 0.12 l1,A , σ(νed → e+nn) = 1.93 + 0.059 l1,A , (33)

where x = e, µ, τ . Thus, a determination of l1,A at the ∼ 10% level translates into an
uncertainty in these cross sections at the few percent level.

In the presence of a background weak field of the form given in eqs. (29) and (30), the
Iz = 0 component of the 1S0 channel mixes with the m = 0 component of the 3S1 channel,
as is the case in the presence of a background magnetic field. The energy-eigenvalues of
1S0(Iz = 0) −3S1(m = 0) NN system in a finite volume with this weak field are solutions to

[

p cot δ1 −
S1 + S2

2πL

] [

p cot δ3 −
S1 + S2

2πL

]

=

[

gW l1,A

4
−

S1 − S2

2πL

]2

, (34)
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coupling constant. We note that due to the nature of the interaction, weak “Landau-levels”
are not present in this system.

The cross sections for the weak-disintegration of the deuteron and other two-nucleon
weak processes depend upon the dimensionless coefficient l1,A. These processes have been
studied extensively by Butler and Chen [47, 48] and also by Butler, Chen and Kong [49] and
our (renormalization-group invariant) l1,A is related to the constants they introduce. The
coefficient of the four-nucleon operator in EFT(π/), π/L1,A, is related to l1,A via

l1,A = −
2(µ − γ)

C(1S0)
0 (µ)

[

π/L1,A(µ) − πgA

(

M

2π
C(1S0)

2 (µ) +
r3

(µ − γ)2

) ]

, (31)

where C(1S0)
0,2 (µ) are the coefficients of the zero- and two-derivative strong interaction opera-

tors in EFT(π/). Numerically, eq. (31) reduces to

l1,A = −13.4 + 0.27 π/L1,A , (32)

when the RG-scale µ = mπ is chosen, and where π/L1,A is in units of fm3. Calculations
have been done in which a chiral expansion of the weak currents are performed in a manner
consistent with Weinberg’s power-counting [50]. Matrix elements of these operators are taken
between wave-functions generated with the best modern NN potentials [13]. This method is
somewhat ad hoc, but it has been demonstrated to be convergent where it has been tested. A
calculation of tritium β-decay in such a framework leads to [13] π/L1,A(mπ) = +4.2±0.1 fm3.
Chen, Heeger and Robertson [11] have surveyed the experimental and theoretical constraints
on π/L1,A(mπ) and have also provided a model-independent determination of this quantity
from the SNO and Super-Kamiokande data, finding π/L1,A = +4.0 ± 6.3 fm3.

The cross sections for the processes νd → νnp, νd → νnp, and νd → e+nn are all
given in terms of π/L1,A(mπ), in Refs. [47, 48, 49], and analytic expressions for each can be
found there. As these expressions are quite complicated, we do not reproduce them here.
Numerical values of the cross sections for these processes can be found in Refs. [47, 48, 49].
As an example, at Eν,ν = 10 MeV the cross sections are, in units of 10−42 cm2,

σ(νxd → νxnp) = 1.76 + 0.056 l1,A , σ(νxd → νxnp) = 1.66 + 0.052 l1,A

σ(νed → e−pp) = 4.07 + 0.12 l1,A , σ(νed → e+nn) = 1.93 + 0.059 l1,A , (33)

where x = e, µ, τ . Thus, a determination of l1,A at the ∼ 10% level translates into an
uncertainty in these cross sections at the few percent level.

In the presence of a background weak field of the form given in eqs. (29) and (30), the
Iz = 0 component of the 1S0 channel mixes with the m = 0 component of the 3S1 channel,
as is the case in the presence of a background magnetic field. The energy-eigenvalues of
1S0(Iz = 0) −3S1(m = 0) NN system in a finite volume with this weak field are solutions to

[

p cot δ1 −
S1 + S2

2πL

] [

p cot δ3 −
S1 + S2

2πL

]

=

[

gW l1,A

4
−

S1 − S2

2πL

]2

, (34)

15

uncertainty

% level in

This interaction leads to interactions in the di-baryon formulation of EFT(π/) of the form

δL = −gW
gA

2
N †σzτ 3N −

gW l1,A

2M
√

r1r3

[

t†3s3 + h.c.
]

+ ... , (30)

where the ellipses denotes terms higher order in EFT(π/), and gA = 1.26 is the nucleon axial
coupling constant. We note that due to the nature of the interaction, weak “Landau-levels”
are not present in this system.

The cross sections for the weak-disintegration of the deuteron and other two-nucleon
weak processes depend upon the dimensionless coefficient l1,A. These processes have been
studied extensively by Butler and Chen [47, 48] and also by Butler, Chen and Kong [49] and
our (renormalization-group invariant) l1,A is related to the constants they introduce. The
coefficient of the four-nucleon operator in EFT(π/), π/L1,A, is related to l1,A via

l1,A = −
2(µ − γ)

C(1S0)
0 (µ)

[

π/L1,A(µ) − πgA

(

M

2π
C(1S0)

2 (µ) +
r3

(µ − γ)2

) ]

, (31)

where C(1S0)
0,2 (µ) are the coefficients of the zero- and two-derivative strong interaction opera-

tors in EFT(π/). Numerically, eq. (31) reduces to

l1,A = −13.4 + 0.27 π/L1,A , (32)

when the RG-scale µ = mπ is chosen, and where π/L1,A is in units of fm3. Calculations
have been done in which a chiral expansion of the weak currents are performed in a manner
consistent with Weinberg’s power-counting [50]. Matrix elements of these operators are taken
between wave-functions generated with the best modern NN potentials [13]. This method is
somewhat ad hoc, but it has been demonstrated to be convergent where it has been tested. A
calculation of tritium β-decay in such a framework leads to [13] π/L1,A(mπ) = +4.2±0.1 fm3.
Chen, Heeger and Robertson [11] have surveyed the experimental and theoretical constraints
on π/L1,A(mπ) and have also provided a model-independent determination of this quantity
from the SNO and Super-Kamiokande data, finding π/L1,A = +4.0 ± 6.3 fm3.

The cross sections for the processes νd → νnp, νd → νnp, and νd → e+nn are all
given in terms of π/L1,A(mπ), in Refs. [47, 48, 49], and analytic expressions for each can be
found there. As these expressions are quite complicated, we do not reproduce them here.
Numerical values of the cross sections for these processes can be found in Refs. [47, 48, 49].
As an example, at Eν,ν = 10 MeV the cross sections are, in units of 10−42 cm2,

σ(νxd → νxnp) = 1.76 + 0.056 l1,A , σ(νxd → νxnp) = 1.66 + 0.052 l1,A

σ(νed → e−pp) = 4.07 + 0.12 l1,A , σ(νed → e+nn) = 1.93 + 0.059 l1,A , (33)

where x = e, µ, τ . Thus, a determination of l1,A at the ∼ 10% level translates into an
uncertainty in these cross sections at the few percent level.

In the presence of a background weak field of the form given in eqs. (29) and (30), the
Iz = 0 component of the 1S0 channel mixes with the m = 0 component of the 3S1 channel,
as is the case in the presence of a background magnetic field. The energy-eigenvalues of
1S0(Iz = 0) −3S1(m = 0) NN system in a finite volume with this weak field are solutions to

[

p cot δ1 −
S1 + S2

2πL

] [

p cot δ3 −
S1 + S2

2πL

]

=

[

gW l1,A

4
−

S1 − S2

2πL

]2

, (34)

15



Lecture IV:     -PT Primer

• QCD and chiral symmetry

• Chiral perturbation theory

• Power counting

• QCD in finite volume

• Symanzik action

•

χ

ππ



Why is QCD interesting?

• “Background” for beyond-the-Standard-Model physics

• Hadronic/Nuclear mysteries (S-wave NN scattering lengths)

• No experiments (ΛN , ππ, Kπ, KK)

• Quark-mass dependence (lattice QCD)

• Because the Nobel committee says so

Taiwan 6/2008 – p. 11/42



3 Chiral perturbation theory

3.1 Chiral symmetry in QCD

QCD is the accepted theory of the strong interactions. At large momentum transfer, as
in deep inelastic scattering processes and the decays of heavy particles such as the Z, the
theory is perturbative due to asymptotic freedom. The flip side is that in the infrared, the
theory becomes nonperturbative. This is good in the sense that we know that the light
hadrons don’t look at all like a collection of quarks weakly interacting via gluon exchange.
But it does mean that QCD is not of much help in quantitatively understanding hadron
phenomenology without resorting to lattice QCD and a computer. However, there does exist
an effective field theory which is very powerful for analytically treating the interactions of
the lightest hadrons, the pseudoscalar octet, consisting of the π, K, K and η.

The reason that the pseudoscalar octet mesons are lighter is because they are the pseudo-
Goldstone bosons (PGBs) that arise from the spontaneous breaking of an approximate
symmetry in QCD.

Consider the QCD Lagrangian, keeping only the three lightest quarks, u, d and s:

L =
3∑

i=1

(
qii /Dqi − miqiqi

)
−

1

2
TrGµνGµν , (50)

where Dµ = ∂µ + igAµ is the covariant derivative, Aµ = Aa
µTa are the eight gluon fields

with Ta being SU(3) generators in the 3 representation, and Gµν being the gluon field
strength. Note that if I write the kinetic term in terms of right-handed and left-handed
quarks, projected out by (1 ± γ5)/2 respectively, then the kinetic term may be written as

∑

i

qii /Dqi =
∑

i

(
qLii /DqLi + qRii /DqRi

)
. (51)

This term by itself evidently respects a U(3)L ×U(3)R symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)A transformation where qi → eiαγ5qi, is in fact
not a symmetry of the quantum theory, due to anomalies; it is a symmetry of the action but
not of the measure of the path integral. This leaves us with a U(1)V × SU(3)L × SU(3)R
symmetry. The U(1)V is just baryon number, under which both left- and right-handed
quarks of all flavors pick up a common phase. The remaining SU(3)L × SU(3)R symme-
try, under which qLi → LijqLj and qRj → RijqRj, where R and L are independent SU(3)
matrices, is called “chiral symmetry”.

SU(3)L × SU(3)R is not an exact symmetry of QCD, however. The quark mass terms
may be written as

∑

i

miqiqi =
∑

i,j

qRiMijqLj + h.c. , M =




mu

md

ms



 , (52)

where the quark masses mi are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:

29

LQCD = −
1

2
tr(GµνG

µν) + qMq

Gµν = ∂µAν − ∂νAµ + igS [Aµ, Aν ]

M = iγµ∂µ − gSγµAµ − Mq q = (u, d, s, c, b, t)T

LQCD ∼

g
S

2 g
S

g
S
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invariance

Symmetries of QCD

LQCD = ūi !Du + d̄i !Dd − muūu − mdd̄d − 1
4GµνGµν

mu = md ⇒ theory symmetric under u ↔ d

Isospin: symmetry under n ↔ p SU(2)V

Chiral Symmetry: form qL,R = 1
2(1 ± γ5)q;

mu, md = a few MeV # ΛQCD ⇒ mu, md → 0

LQCD → ūLi !DuL + d̄Li !DdL + ūRi !DuR + d̄Ri !DdR − 1
4GµνGµν

Symmetry under uL ↔ dL and uR ↔ dR

SU(2)L × SU(2)R

Prediction: Symmetry of QCD Hamiltonian ⇒ for every positive parity eigenstate of HQCD

there should be an (almost) degenerate negative parity eigenstate
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This term by itself evidently respects a U(3)L ×U(3)R symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)A transformation where qi → eiαγ5qi, is in fact
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where the quark masses mi are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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Isospin

B + I3 + Y3× U(1)↔

NOTE



|B〉 ∼ |(1, 8)〉 + |(8, 1)〉

|B∗〉 ∼ |(1, 8)〉 − |(8, 1)〉

P|(L,R)〉 = |(R,L)〉

P|B〉 = |B〉

P|B∗〉 = −|B∗〉

MB = 〈B|HQCD|B〉 = 〈B∗|HQCD|B∗〉 = MB∗

HQCD ∈ (1, 1)

Consequences of chiral symmetry?

Parity doubling!

Assume ground state baryon octet of  positive parity     :

Must also have:

P

(Wigner-Weyl)



Experimental baryon spectrum

Cohen & Glozman, Int. J. Mod. Phys. A17, 1237 (2002)
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EXPERIMENT: Baryons

Big splitting!!



EXPERIMENT: Mesons
The strong-interaction mass gap
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Big splitting!!

Big splitting?!



Two alternatives for axial charges

QA
i |0〉 = 0

Wigner-Weyl realization of G
ground state is symmetric

〈0|qR qL |0〉 = 0

ordinary symmetry
spectrum contains parity partners

degenerate multiplets of G

QA
i |0〉 #= 0

Nambu-Goldstone realization of G
ground state is asymmetric

〈0|qR qL |0〉 #= 0

“order parameter”
spontaneously broken symmetry

spectrum contains Goldstone bosons
degenerate multiplets of SU(3)V ⊂G

G = SU(3)R × SU(3)L
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G = SU(3)L × SU(3)R



Analogy: Ferromagnetism

Above Tc:

〈M〉 = 0

Below Tc:

〈M〉 #= 0
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Analogy (contd.)

Spontaneous symmetry breaking:

below Tc ground state of Hamiltonian does not have symmetry of Hamiltonian itself

⇒ Existence of zero-energy excitations: “Goldstone modes”

Ferromagnetism QCD

Ground state |magnet〉 QCD vacuum |0〉

〈magnet|M|magnet〉 〈0|q̄q|0〉

O(3) SU(2)A

Low temperature Low energy, also T

Magnons Pions
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Analogy



• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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3 Chiral perturbation theory

3.1 Chiral symmetry in QCD

QCD is the accepted theory of the strong interactions. At large momentum transfer, as
in deep inelastic scattering processes and the decays of heavy particles such as the Z, the
theory is perturbative due to asymptotic freedom. The flip side is that in the infrared, the
theory becomes nonperturbative. This is good in the sense that we know that the light
hadrons don’t look at all like a collection of quarks weakly interacting via gluon exchange.
But it does mean that QCD is not of much help in quantitatively understanding hadron
phenomenology without resorting to lattice QCD and a computer. However, there does exist
an effective field theory which is very powerful for analytically treating the interactions of
the lightest hadrons, the pseudoscalar octet, consisting of the π, K, K and η.

The reason that the pseudoscalar octet mesons are lighter is because they are the pseudo-
Goldstone bosons (PGBs) that arise from the spontaneous breaking of an approximate
symmetry in QCD.

Consider the QCD Lagrangian, keeping only the three lightest quarks, u, d and s:

L =
3∑

i=1

(
qii /Dqi − miqiqi

)
−

1

2
TrGµνGµν , (50)

where Dµ = ∂µ + igAµ is the covariant derivative, Aµ = Aa
µTa are the eight gluon fields

with Ta being SU(3) generators in the 3 representation, and Gµν being the gluon field
strength. Note that if I write the kinetic term in terms of right-handed and left-handed
quarks, projected out by (1 ± γ5)/2 respectively, then the kinetic term may be written as

∑

i

qii /Dqi =
∑

i

(
qLii /DqLi + qRii /DqRi

)
. (51)

This term by itself evidently respects a U(3)L ×U(3)R symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)A transformation where qi → eiαγ5qi, is in fact
not a symmetry of the quantum theory, due to anomalies; it is a symmetry of the action but
not of the measure of the path integral. This leaves us with a U(1)V × SU(3)L × SU(3)R
symmetry. The U(1)V is just baryon number, under which both left- and right-handed
quarks of all flavors pick up a common phase. The remaining SU(3)L × SU(3)R symme-
try, under which qLi → LijqLj and qRj → RijqRj, where R and L are independent SU(3)
matrices, is called “chiral symmetry”.

SU(3)L × SU(3)R is not an exact symmetry of QCD, however. The quark mass terms
may be written as

∑

i

miqiqi =
∑

i,j

qRiMijqLj + h.c. , M =




mu

md

ms



 , (52)

where the quark masses mi are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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gets replaced by a general SU(3) matrix,
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unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing
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1

2
δab , (57)
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f is a parameter with dimension of mass which we will relate to the pion decay constant
fπ, and the πa are eight mesons transforming as an octet under SU(3)V . These bosons
correspond to long wavelength excitations of the vacuum.

If you are somewhat overwhelmed by this amazing mix of symmetries that are gauged,
global, exact, approximate, spontaneously broken and anomalous (and usually more than
one of these attributes at the same time), rest assured that it took a decade and many
physicists to sort it all out (the 1960’s).

3.2 Quantum numbers of the meson octet

A useful basis for SU(3) generators is Ta = 1
2λa, where λa are Gell Mann’s eight matrices.

The meson matrix π ≡ πaTa appearing in the exponent of Σ is a traceless 3 × 3 matrix.
We know that under an SU(3)V transformation L = R = V ,

Σ → V ΣV † = e2iV πV †/f , (58)

implying that under SU(3)V the mesons transform as an octet should, namely

π → V πV † . (59)

Then by restricting V to be an I3 (T3) or a Y (T8) rotation we can read off the quantum
numbers of each element of the π matrix and identify them with real particles (problem
III.1):

π =
1√
2





π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K0 − 2η√
6



 (60)

The normalization is such that

Tr(ππ) =
1

2

∑

a

(πa)
2 =

1

2
(π0)2 +

1

2
η2 + π+π− + K+K− + K0K0 . (61)

3.3 The chiral Lagrangian

3.3.1 The leading term and the meson decay constant

We are now ready to write down the effective theory of excitations of the chiral condensate
(the chiral Lagrangian), ignoring all the other modes of QCD. This is analogous to the
quantization of rotational modes of a diatomic molecule, ignoring the vibrational modes.
We are guided by two basic principles of effective field theory: (i) The chiral Lagrangian
must exhibit the same approximate chiral symmetry as QCD, which means that it must
be invariant under Σ → LΣR† for arbitrary SU(3)L × SU(3)R matrices L, R in the “chiral
limit”, M → 0. We will also be able to incorporate symmetry breaking effects by including
the matrix M , requiring that the chiral Lagrangian be invariant under the chiral symmetry
if M were to transform as in eq. (53). (ii) The other principle is that the effective theory
be an expansion of local operators suppressed by powers of a cutoff Λ, which is set by
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On mesons, the topic of these lectures, quark-number U(1) is trivially realized, and we may
drop it from consideration.

In the real world, we find that there exists an octet of pseudoscalar mesons with masses
smaller than any other hadron masses. Moreover, one observes that relations between their
masses and interactions are reasonably well described by assuming an approximate SU(3)
flavor symmetry.4 Under this SU(3), the pseudoscalar mesons form an octet

φ =









π0√
2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K
0 − 2η√

6









∼







uu ud us
du dd ds
su sd ss





 , (2.6)

where we also indicated the (valence) quark content.5 (In the theory with only two light
flavors, φ reduces to the two-by-two upper left-hand block, with the η omitted.) Under
SU(3) this octet transforms as

φ → UφU † , (2.7)

and it is clear that this SU(3) can be identified with the diagonal subgroup SU(3)V of
SU(3)L × SU(3)R, for which UL = UR = U in Eq. (2.4).

If the full symmetry group SU(3)L × SU(3)R were realized “manifestly” in nature, we
would observe larger hadronic multiplets, and in particular, we would observe “parity part-
ners,” i.e. , pairs of hadrons with the same mass but opposite parity, since parity takes
left-handed quarks into right-handed ones and vice versa.6 Such parity partners are in gen-
eral not observed, and specifically, there are no scalar mesons with masses near those of
the pseudoscalar multiplet of Eq. (2.6). Instead, it is universally believed (with very strong
evidence from both the real world and lattice computations) that, in a (hypothetical!) world
with massless quarks, the chiral group is spontaneously broken to the diagonal subgroup,
SU(3)L×SU(3)R → SU(3)V . This requires eight Nambu–Goldstone bosons (NGBs), which
are identified with the pions, eta and kaons of Eq. (2.6). Since the broken generators distin-
guish between left- and right-handed quarks, these NGBs have to be pseudoscalars. In the
real world, quarks are not massless, but if the quark masses mu,d,s are small compared to
ΛQCD, they can be treated as a perturbation (as we will see below), giving the NGBs a small
mass. Indeed, the pions have a very small mass of about 140 MeV, while the kaons and eta
have a mass of about 500 MeV, which is at least smallish compared to other hadron masses.
For a proof that SU(3)V does not undergo spontaneous symmetry breaking in continuum
QCD, see Ref. [9].

Our interest in these lectures will be in the physics of these NGBs, at energies below those
at which any other hadrons can be produced. We therefore expect that it should be possible
to find an EFT for the physics of NGBs. What that means is that it should be possible to
write down a local lagrangian in terms of the field φ that, in some systematic approximation,
reproduces correlation functions involving only NGBs, with restrictions imposed by the
principles of quantum field theory. The chiral lagrangian is precisely this EFT.

4 We will return to the issue that the strange quark mass is much larger than the up and down quark

masses, see Sec. V.
5 We ignore isospin breaking, which causes the fields π0 and η of Eq. (2.6) to mix, in most of these lectures.
6 In mathematical terms, parity is an automorphism of the group SU(3)L × SU(3)R.
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Assume:

Excitations of the condensate:

The Goldstone bosons

mass scale t.b.d

SU(3)L × SU(3)R → SU(3)V
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
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gets replaced by a general SU(3) matrix,
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(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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f is a parameter with dimension of mass which we will relate to the pion decay constant
fπ, and the πa are eight mesons transforming as an octet under SU(3)V . These bosons
correspond to long wavelength excitations of the vacuum.

If you are somewhat overwhelmed by this amazing mix of symmetries that are gauged,
global, exact, approximate, spontaneously broken and anomalous (and usually more than
one of these attributes at the same time), rest assured that it took a decade and many
physicists to sort it all out (the 1960’s).

3.2 Quantum numbers of the meson octet

A useful basis for SU(3) generators is Ta = 1
2λa, where λa are Gell Mann’s eight matrices.

The meson matrix π ≡ πaTa appearing in the exponent of Σ is a traceless 3 × 3 matrix.
We know that under an SU(3)V transformation L = R = V ,

Σ → V ΣV † = e2iV πV †/f , (58)

implying that under SU(3)V the mesons transform as an octet should, namely

π → V πV † . (59)

Then by restricting V to be an I3 (T3) or a Y (T8) rotation we can read off the quantum
numbers of each element of the π matrix and identify them with real particles (problem
III.1):

π =
1√
2





π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K0 − 2η√
6



 (60)

The normalization is such that

Tr(ππ) =
1

2

∑

a

(πa)
2 =

1

2
(π0)2 +

1

2
η2 + π+π− + K+K− + K0K0 . (61)

3.3 The chiral Lagrangian

3.3.1 The leading term and the meson decay constant

We are now ready to write down the effective theory of excitations of the chiral condensate
(the chiral Lagrangian), ignoring all the other modes of QCD. This is analogous to the
quantization of rotational modes of a diatomic molecule, ignoring the vibrational modes.
We are guided by two basic principles of effective field theory: (i) The chiral Lagrangian
must exhibit the same approximate chiral symmetry as QCD, which means that it must
be invariant under Σ → LΣR† for arbitrary SU(3)L × SU(3)R matrices L, R in the “chiral
limit”, M → 0. We will also be able to incorporate symmetry breaking effects by including
the matrix M , requiring that the chiral Lagrangian be invariant under the chiral symmetry
if M were to transform as in eq. (53). (ii) The other principle is that the effective theory
be an expansion of local operators suppressed by powers of a cutoff Λ, which is set by
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normalized kinetic term

L0 =
f2

4
Tr∂µΣ†∂µΣ =

1
2
∂µπa∂µπa + interactions

• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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the scale of physics we are ignoring, such as the ρ, K∗, ω, and η′ mesons (with masses
mρ = 770 MeV, mK∗ = 892 MeV, mω = 782 MeV and mη′ = 958 MeV). In practice,
the cutoff seems to be at Λ " 1 GeV in many processes. Our calculations will involve
an expansion in powers of momenta or meson masses divided by Λ. This cutoff is to be
compared with mπ± = 140 MeV, mK+ = 494 MeV and mη = 548 MeV. For purely mesonic
processes, meson masses always appear squared, which helps. Nevertheless, one can surmise
that chiral perturbation theory will work far better for pions than kaons or the η. This is
a reflection of the fact that SU(2)L × SU(2)R is a much better symmetry of QCD than
SU(3)L × SU(3)R.

The lowest dimension chirally symmetric operator we can write down is

L0 =
f2

4
Tr∂Σ†∂Σ = Tr∂π∂π +

1

3f2
Tr[∂π,π]2 + . . . (62)

Note that the f2/4 prefactor is fixed by requiring that the mesons have canonically normal-
ized kinetic terms. Thus we have an infinite tower of operators involving a single unknown
parameter, f . From the above Lagrangian, it would seem that the only way to determine
f is by looking at ππ scattering. However there is a better way: by looking at the charged
pion decay π → µν. This occurs through the “semi-leptonic” weak interaction eq. (28),
namely the operator

1√
2
GF Vud (uγµ(1 − γ5)d) (µγµ(1 − γ5)νµ) + h.c. (63)

The matrix element of this operator sandwiched between |µν〉 and 〈π| factorizes, and the
leptonic part is perturbative. We are left with the nonperturbative part,

〈0|uγµ(1 − γ5)d|π−(p)〉 ≡ i
√

2 fπpµ . (64)

The pion decay constant fπ is determined from the charged pion lifetime to be fπ =
92.4 ± .25 MeV.

Even though QCD is nonperturbative, we can easily match this charged current operator
onto an operator in the chiral Lagrangian. That is because we can write

uγµ(1 − γ5)d = 2
(
jµ
L1 + ijµ

L2

)
, (65)

where jµ
La are the eight SU(3)L currents

jµ
La ≡ qγµ

(
1 − γ5

2

)
Taq . (66)

To compute these currents in the effective theory is easy, since we know that under in-
finitesimal SU(3)L transformations the change in Σ is δLaΣ = iTaΣ, from which we can
compute the left-handed currents from the Lagrangian eq. (62) using Noether’s theorem.
The result is:

jµ
La = −i

f2

2
TrTaΣ

†∂µΣ = fTrTa∂
µπ + O(π2) . (67)
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fπ = 92.4± 0.25 MeV
π → µν

the scale of physics we are ignoring, such as the ρ, K∗, ω, and η′ mesons (with masses
mρ = 770 MeV, mK∗ = 892 MeV, mω = 782 MeV and mη′ = 958 MeV). In practice,
the cutoff seems to be at Λ " 1 GeV in many processes. Our calculations will involve
an expansion in powers of momenta or meson masses divided by Λ. This cutoff is to be
compared with mπ± = 140 MeV, mK+ = 494 MeV and mη = 548 MeV. For purely mesonic
processes, meson masses always appear squared, which helps. Nevertheless, one can surmise
that chiral perturbation theory will work far better for pions than kaons or the η. This is
a reflection of the fact that SU(2)L × SU(2)R is a much better symmetry of QCD than
SU(3)L × SU(3)R.

The lowest dimension chirally symmetric operator we can write down is

L0 =
f2

4
Tr∂Σ†∂Σ = Tr∂π∂π +

1

3f2
Tr[∂π,π]2 + . . . (62)

Note that the f2/4 prefactor is fixed by requiring that the mesons have canonically normal-
ized kinetic terms. Thus we have an infinite tower of operators involving a single unknown
parameter, f . From the above Lagrangian, it would seem that the only way to determine
f is by looking at ππ scattering. However there is a better way: by looking at the charged
pion decay π → µν. This occurs through the “semi-leptonic” weak interaction eq. (28),
namely the operator

1√
2
GF Vud (uγµ(1 − γ5)d) (µγµ(1 − γ5)νµ) + h.c. (63)

The matrix element of this operator sandwiched between |µν〉 and 〈π| factorizes, and the
leptonic part is perturbative. We are left with the nonperturbative part,

〈0|uγµ(1 − γ5)d|π−(p)〉 ≡ i
√

2 fπpµ . (64)

The pion decay constant fπ is determined from the charged pion lifetime to be fπ =
92.4 ± .25 MeV.

Even though QCD is nonperturbative, we can easily match this charged current operator
onto an operator in the chiral Lagrangian. That is because we can write

uγµ(1 − γ5)d = 2
(
jµ
L1 + ijµ

L2

)
, (65)

where jµ
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To compute these currents in the effective theory is easy, since we know that under in-
finitesimal SU(3)L transformations the change in Σ is δLaΣ = iTaΣ, from which we can
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jµ
La = −i

f2

2
TrTaΣ†∂µΣ =

1
2

f∂µπa + . . .

In particular,

2
(
jµ
L1 + ijµ

L2

)
= 2f Tr




0 1 0
0 0 0
0 0 0



 ∂µπ + O(π2) =
√

2f∂µπ− + O(π2) , (68)

were I made use of eq. (60). Comparing this equation with eq. (64) we see that to this
order,

f = fπ = 93 MeV . (69)

In general it is not possible to exactly match quark operators to a unique operator in
the chiral Lagrangian; it was possible for the semi-leptonic decays simply because the weak
operator factorized into a leptonic matrix element and a hadronic matrix element of an
SU(3)L symmetry current. For a purely hadronic weak decay, such as K → ππ the four
quark operator cannot be factorized, and matching to operators in the chiral Lagrangian
involves coefficients which can only be computed on a lattice. Even for these processes the
chiral Lagrangian can be predictive, relating weak decays with different numbers of mesons
in the final state.

3.3.2 Explicit symmetry breaking

Up to now, I have only discussed operators in the chiral Lagrangian which are invari-
ant under chiral symmetry. Note that that all chirally invariant operators must involve
derivatives (other than the operator 1). For example, one cannot write down a chirally
invariant mass term for the pions. Recall that without explicit chiral symmetry breaking in
the QCD Lagrangian, there would be an infinite number of inequivalent degenerate vacua
corresponding to different constant values of the matrix Σ; therefore the energy (and the
Lagrangian) can only have operators which vanish when Σ is constant, up to an overall
vacuum energy independent of Σ. In fact, rotating Σ → Σ′ = Σ+ idθa Ta Σ for constant dθa

is an exact symmetry of the theory (SU(3)L), and corresponds to shifting the pion fields
πa → πa + dθa f/2 + O(π2). Purely derivative interactions are a consequence of this shift
symmetry. In the literature, this is called a nonlinearly realized symmetry, which is to say, a
spontaneously broken symmetry. A theory of massless particles with nontrivial interactions
at zero momentum transfer (such as QCD) would suffer severe infrared divergences, and so
if the interactions had not been purely derivative, the theory would either not make sense,
or would become nonperturbative like QCD or else undergo spontaneous breaking of the
vector SU(3).

This all changes when explicit chiral symmetry breaking is included. Now not all vacua
are equivalent, the massless Goldstone bosons become massive “pseudo-Goldstone bosons”
(PGBs), and acquire non-derivative interactions. In pure QCD, the only sources of explicit
chiral symmetry breaking are instantons (which break the U(1)A symmetry) and the quark
mass matrix. Electromagnetic interactions also introduce chiral symmetry breaking, as do
weak interactions.

To include the effect of quark masses, we need to include the mass matrix M , recalling
that if it transformed as in eq. (53), then the theory would have to be invariant. Just as
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Explicit chiral symmetry breaking:

3 Chiral perturbation theory

3.1 Chiral symmetry in QCD

QCD is the accepted theory of the strong interactions. At large momentum transfer, as
in deep inelastic scattering processes and the decays of heavy particles such as the Z, the
theory is perturbative due to asymptotic freedom. The flip side is that in the infrared, the
theory becomes nonperturbative. This is good in the sense that we know that the light
hadrons don’t look at all like a collection of quarks weakly interacting via gluon exchange.
But it does mean that QCD is not of much help in quantitatively understanding hadron
phenomenology without resorting to lattice QCD and a computer. However, there does exist
an effective field theory which is very powerful for analytically treating the interactions of
the lightest hadrons, the pseudoscalar octet, consisting of the π, K, K and η.

The reason that the pseudoscalar octet mesons are lighter is because they are the pseudo-
Goldstone bosons (PGBs) that arise from the spontaneous breaking of an approximate
symmetry in QCD.

Consider the QCD Lagrangian, keeping only the three lightest quarks, u, d and s:

L =
3∑

i=1

(
qii /Dqi − miqiqi

)
−

1

2
TrGµνGµν , (50)

where Dµ = ∂µ + igAµ is the covariant derivative, Aµ = Aa
µTa are the eight gluon fields

with Ta being SU(3) generators in the 3 representation, and Gµν being the gluon field
strength. Note that if I write the kinetic term in terms of right-handed and left-handed
quarks, projected out by (1 ± γ5)/2 respectively, then the kinetic term may be written as

∑

i

qii /Dqi =
∑

i

(
qLii /DqLi + qRii /DqRi

)
. (51)

This term by itself evidently respects a U(3)L ×U(3)R symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)A transformation where qi → eiαγ5qi, is in fact
not a symmetry of the quantum theory, due to anomalies; it is a symmetry of the action but
not of the measure of the path integral. This leaves us with a U(1)V × SU(3)L × SU(3)R
symmetry. The U(1)V is just baryon number, under which both left- and right-handed
quarks of all flavors pick up a common phase. The remaining SU(3)L × SU(3)R symme-
try, under which qLi → LijqLj and qRj → RijqRj, where R and L are independent SU(3)
matrices, is called “chiral symmetry”.

SU(3)L × SU(3)R is not an exact symmetry of QCD, however. The quark mass terms
may be written as

∑

i

miqiqi =
∑

i,j

qRiMijqLj + h.c. , M =




mu

md

ms



 , (52)

where the quark masses mi are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:
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!= 0• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as
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smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;
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isospin symmetry.
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isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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LM = λM
f2

2
(TrMΣ + h.c.) =

1
2
m2

πa
πaπa + interactions

m2
π = λM (mu + md) m2

K+ = λM (mu + ms) m2
K0 = λM (md + ms)

m2
η =

1
3
λM (mu + md + 4ms) + O

(
(mu −md)2

)

m2
π0 = λM (mu + md) + O

(
(mu −md)2

)

with derivatives, each power of M will be accompanied by 1/Λ. The leading operator we
can write down is

LM = Λ2f2

(
c

2

1

Λ
TrMΣ + h.c.
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1
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f2Tr(Λ̃M)Σ + h.c. , (70)

where c is an unknown dimensionless coefficient, and I defined

cΛ ≡ Λ̃ = O(Λ) . (71)

Expanding to second order in the π, I get

LM = −m2
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K+K+K− − m2
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1

2

(
π0 η

)
M2

0

(
π0

η

)
, (72)

with

m2
π = Λ̃(mu + md) , m2

K+ = Λ̃(mu + ms) , m2
K0 = Λ̃(md + ms) , (73)

and

M2
0 = Λ̃

(
(mu + md) (mu − md)
(mu − md)

1
3(mu + md + 4ms)

)
(74)

Note that (i) the squares of the meson masses are proportional to quark masses; (ii) π0 − η
mixing is isospin breaking and proportional to (mu − md); (iii) expanding in powers of
(mu − md), m2

η and m2
π0 are given by the diagonal entries of M2

0 , up to corrections of
O

(
(mu − md)2

)
; (iv) we cannot directly relate quark and meson masses because of the

unknown coefficient Λ̃.
Ignoring isospin breaking, the masses obey the Gell-Mann Okuba formula

3m2
η + m2

π = 4m2
K . (75)

The two sides of the above equation are satisfied experimentally to better than 1% accuracy.
It is not difficult to include the effects of electromagnetism in the chiral Lagrangian

(problem III.6). To leading order in α, electromagnetic corrections shift the square of the
masses for the charged mesons:

m2
π+ = Λ̃(mu + md) +

α

4π
∆2 , m2

K+ = Λ̃(mu + ms) +
α

4π
∆2 , (76)

while leaving neutral meson masses unchanged. In the above formula, ∆ has mass dimension
1, and is O(Λ) in size; the prefactor of α/4π arises since the splitting must arise from a
loop diagram involving a photon. Following Weinberg, we can also use the above formula
to calculate the ratios of quark masses via the formulas

(m2
K+ − m2

K0) − (m2
π+ − m2

π0)

m2
π0

=
mu − md

mu + md
,

3m2
η − m2

π0

m2
π0

=
4ms

mu + md
. (77)

Plugging in the measured meson masses, the result is

mu

md
#

1

2
,

md

ms
#

1

20
. (78)
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by L(2), we need to introduce L(4). The new constants L1,2,3 represent the effect of the
underlying physics that has been integrated out in the EFT. This is the beginning of a
general pattern, as we will argue in Sec. IIC below.

Before we discuss higher orders, let us consider order p4 in some more detail. First, note
that the one-loop contribution is in fact of order p2/(4πf)2 relative to Eq. (2.15). Any EFT
involves an expansion in a ratio of scales, and in ChPT the higher scale in this ratio appears
in the form 4πf . The size of f can be estimated from pion scattering (using Eq. (2.15)); for
another method, see Sec. IID. At the level of ChPT, the “low-energy” constants (LECs)
f and Li are free parameters, which can only be determined either by comparison with
experiment, or by matching ChPT to a lattice QCD computation. We can say something
about the “generically expected” values of the Li. Since the Li absorb the scale dependence,
we expect that their magnitude changes by an amount of order 1/(4π)2 log(Λ/Λ′) when we
change the scale Λ → Λ′. Since the cutoff Λ appears because we integrated out all heavier
hadrons, a physically sensible choice for Λ is the typical hadronic scale of 1 GeV. With this
interpretation, varying the cutoff within an order of magnitude is reasonable. This shifts
the Li by an amount of order 1/(4π)2, and gives us a sense of what one expects the values
of these LECs to be.

C. Power counting

Now, let us consider the derivative expansion more systematically, and show that indeed
the chiral theory is a proper EFT. What this means is that there exists a systematic power
counting, and that to any order in the expansion we need only a finite number of coupling
constants to define the theory.

Consider an amputated connected diagram with Vd vertices with d derivatives. Collec-
tively denoting the external momenta by p, this diagram is of order

∑

d dVd − 2I + 4L in p,
where I is the number of internal lines, and L is the number of loops. This follows from
simply counting powers of p. Using, as usual, that the number of loops L = I −∑

d Vd + 1,
we can rewrite this as

∑

d(d− 2)Vd + 2L+ 2. Our diagram is thus of order

f 2p2
(

p2

f 2

)N (

1

f

)E

, (2.18)

with

N =
∑

d

1

2
(d− 2)Vd + L , (2.19)

and E the number of external legs. The powers of f in this result follow from dimensional
analysis. Ignoring the cutoff for now, this is the only other scale in the problem, if we express
all other LECs as products of dimensionless constants times the appropriate power of f .

We see that all contributions to a certain amplitude of a fixed order in external momenta
correspond to a fixed value ofN . For instance, forN = 0, only tree-level diagrams, calculated
from L(2) contribute, because N = 0 requires that L = 0 and Vd = 0 for d > 2. For N = 1,
one-loop diagrams coming from L(2) combine with tree-level diagrams coming from L(4),
consistent with our discussion in the previous section. In general, if we calculate to some
fixed order in N , we need the chiral lagrangian only up to L(2N+2). In other words, while
our EFT is not renormalizable, it is nevertheless predictive if we work to a fixed order in the
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E : external lines
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Sub-leading Lagrangian

χ ≡ 2λMM

• Note that if the mass matrix M were a dynamical field, transforming under SU(3)L ×
SU(3)R as

M → RML† , (53)

then the Lagrangian would be chirally invariant. Thinking of the explicit breaking
of chiral symmetry as being due to spontaneous breaking due to a field M which
transforms as above makes it simple to understand how M must appear in the effective
theory, which will have to be chirally invariant given the above transformation. This
is called treating M as a “spurion”.

• The symmetry is broken to the extent that M #= RML†. Since mu and md are much
smaller than ms, SU(2)L × SU(2)R is not broken as badly as SU(3)L × SU(3)R;

• If all three quark masses were equal but nonzero, then QCD would respect an exact
SU(3)V ⊂ SU(3)L × SU(3)R symmetry, where one sets L = R. This is the SU(3)
symmetry of Gell-Mann.

• Since md − mu is small, SU(2)V ⊂ SU(3)V , where L = R and they act nontrivially
only on the u and d quarks, is quite a good approximate symmetry...also known as
isospin symmetry.

• Independent vector-like phase rotations of the three flavors of quarks are exact sym-
metries...these three U(1) symmetries are linear combinations of baryon number, I3

isospin symmetry, and Y (hypercharge). The latter two are violated by the weak
interactions, but not by the strong or electromagnetic forces.

We know that this still is not the whole story though. An added complication is that
the QCD vacuum spontaneously breaks the chiral SU(3)L × SU(3)R symmetry down to
Gell-Mann’s SU(3)V via the quark condensate:

〈0|qRjqLi|0〉 = Λ3δij , (54)

which transforms as a (3, 3) under SU(3)L × SU(3)R. Here Λ has dimensions of mass. If
one redefines the quark fields by a chiral transformation, the Kronecker δ-function above
gets replaced by a general SU(3) matrix,

δij → (LR†)ij ≡ Σij . (55)

If L = R (an SU(3)V transformation), Σij = δij which shows that the condensate leaves
unbroken the SU(3)V symmetry. For L #= R, Σij represents a different vacuum from eq.
(54), and if it wasn’t for the explicit breaking of SU(3)L × SU(3)R by quark masses in
the QCD Lagrangian, these vacua would be degenerate. By Goldstone’s theorem there-
fore, there would have to be eight exact Goldstone bosons — one for each of the eight
broken generators — corresponding to long wavelength, spacetime dependent rotations of
the condensate. We will parametrize these excitations by replacing

Σ → Σ(x) ≡ e2iπ(x)/f , π(x) = πa(x)Ta (56)

where the Ta are the SU(3) generators (a = 1, . . . , 8) in the defining representation nor-
malized to

TrTaTb =
1

2
δab , (57)
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constants to define the theory.

Consider an amputated connected diagram with Vd vertices with d derivatives. Collec-
tively denoting the external momenta by p, this diagram is of order

∑

d dVd − 2I + 4L in p,
where I is the number of internal lines, and L is the number of loops. This follows from
simply counting powers of p. Using, as usual, that the number of loops L = I −∑

d Vd + 1,
we can rewrite this as

∑

d(d− 2)Vd + 2L+ 2. Our diagram is thus of order

f 2p2
(

p2

f 2

)N (

1

f

)E

, (2.18)

with

N =
∑

d

1

2
(d− 2)Vd + L , (2.19)

and E the number of external legs. The powers of f in this result follow from dimensional
analysis. Ignoring the cutoff for now, this is the only other scale in the problem, if we express
all other LECs as products of dimensionless constants times the appropriate power of f .

We see that all contributions to a certain amplitude of a fixed order in external momenta
correspond to a fixed value ofN . For instance, forN = 0, only tree-level diagrams, calculated
from L(2) contribute, because N = 0 requires that L = 0 and Vd = 0 for d > 2. For N = 1,
one-loop diagrams coming from L(2) combine with tree-level diagrams coming from L(4),
consistent with our discussion in the previous section. In general, if we calculate to some
fixed order in N , we need the chiral lagrangian only up to L(2N+2). In other words, while
our EFT is not renormalizable, it is nevertheless predictive if we work to a fixed order in the
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statistical and the second is an estimate of the systematic error. Thus this scale set-
ting procedure is remarkably robust and consistent. One may wonder about the rel-
evance of the chiral logarithm. Repeating the fitting procedure with f l.u.

π (mπ/fπ) =

bfit f phy
π

[

1 + 1/8π2
[

(mπ/fπ)2 −
(

mphy
π /f phy

π

)2
]

Lfit

]

yields bfit = 0.1330 ± 0.0001 ±
0.0001 fm and Lfit = 1.407±0.010±0.009, which are not consistent with MILC scale setting

or the experimental value of l
phy
4 , respectively. It would appear that the chiral logarithm is

resolved by our data at this order in the chiral expansion.

B. The Scattering Length

With small quark masses and momenta, ππ scattering can be reliably computed in χ-PT.
The leading-order result (equivalent to current algebra) was computed in Ref. [54], and the
one-loop ππ amplitude was computed in Ref. [52]. While this amplitude is now known at
the two-loop level [55, 56], given our current lattice data, we choose to analyze our lattice
results at one-loop level. The one-loop expression for the I = 2 ππ scattering length is

mπa2 = −
m2

π

8πf 2
π

[

1 +
3m2

π

16π2f 2
π

(

log
m2

π

µ2
+ lππ(µ)

)]

, (15)

where lππ(µ) is a linear combination of scale-dependent low-energy constants that appear
in the O(p4) chiral lagrangian [52] (see Appendix A). We define lππ ≡ lππ(µ = 4πfπ),
and therefore we can simply use the ratio mπ/fπ computed on the lattice to determine the
scattering length using eq. (15). The difference between using the lattice fπ and a fixed fπ

in the argument of the logarithm modifies the scattering length only at higher orders in the
chiral expansion.

The lowest-lying energy eigenvalues in the lattice volume, shown in Table II, allow us to
determine the I = 2 ππ scattering lengths at the different light-quark masses via eq. (4). Our
results for the scattering lengths, and other parameters are presented in the summary table,
Table II. The location of the first excited state in the lattice volume allows, in general, for a
determination of the phase-shift at non-zero values of the pion momentum via eq. (1). For
the lattice parameters in these calculations we were able to extract the I = 2 ππ phase-shift
at one (large) momentum at the largest quark mass, which is shown in Table II. For the two
lighter quark masses, the first excited state is very near the four-pion inelastic threshold,
and a simple extraction of the ππ phase-shift is not possible.

The results of our calculation of the product mπa2 are shown as a function of mπ/fπ in
Fig. (2). In addition, we have shown the lowest pion mass datum from the dynamical calcu-
lations of the CP-PACS collaboration [22] 7. The uncertainty in the CP-PACS measurement
is significantly smaller than that of our calculation and the agreement is very encouraging.
In order to extrapolate mπa2 to the physical value of mπ/fπ, we performed a weighted fit of
eq. (15) to the three data points in Table II and extracted a value of the counterterm lππ.
As both quantities, mπa2 and mπ/fπ, are dimensionless there is no systematic uncertainty
arising from the scale setting (l4). We determined that lππ = 3.3± 0.6± 0.3, where the first

7 We have shown the CP-PACS data point at the lightest pion mass, and at the smallest lattice spacing,

β = 2.10, and have not attempted to extrapolate their result to the continuum. This lattice spacing is

comparable to the one used in this work.
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QCD in a Finite Volume
Gasser,Leutwyler (1987)

|p| =
2π|n|

L
! Λχ =⇒ fL # 1

Taiwan 6/2008 – p. 16/47

What happens to chiral symmetry breaking at finite V?



Several Regimes..

• mq〈q̄q〉L4 =(mπL)2(fL)2 ∼ p−2 $ 1:

a

L

m π
−1

mπL>∼ 1 p regime

L−1 ∼ mπ ∼ p

• (mπL)2(fL)2 ∼ ε0 <∼ 1:

a

L

m π
−1

mπL % 1 ε regime

L−1 ∼
√

mπ ∼ ε

Momentum zero-modes nonperturbative

Taiwan 6/2008 – p. 17/47

b

Nucleon Physics
Nucleon Mass in Baryon χPT

N N N N

MN = M0 − 2m (αM + 2σM ) −
1

8πf2

"

3

2
g2

Am3
π +

4 g2
∆N

3π
F (mπ , ∆, µ)

#

+ . . .

p regime (Lt ! Ls) =⇒
∫

d4l →
∫

dl0
∑

!l
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What happens to chiral symmetry breaking at finite b?Finite Lattice Spacing

Rupak, Shoresh (2002) Sharpe, Singleton (1998)

Symanzik action:

O(b) : LEFT
QCD = ψ (D/ + mq)ψ + b cswψσµνGµνψ + . . .

Sheikholeslami-Wohlert

Low-energy theory:

Lχ = λM
f2

4
tr

h

mqΣ† + mqΣ
i

+ λA
f2

4
tr

h

AqΣ† + AqΣ
i

m2
π = λM (mu + md) + 2λA b c(V )

sw
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EFT

3 Chiral perturbation theory

3.1 Chiral symmetry in QCD

QCD is the accepted theory of the strong interactions. At large momentum transfer, as
in deep inelastic scattering processes and the decays of heavy particles such as the Z, the
theory is perturbative due to asymptotic freedom. The flip side is that in the infrared, the
theory becomes nonperturbative. This is good in the sense that we know that the light
hadrons don’t look at all like a collection of quarks weakly interacting via gluon exchange.
But it does mean that QCD is not of much help in quantitatively understanding hadron
phenomenology without resorting to lattice QCD and a computer. However, there does exist
an effective field theory which is very powerful for analytically treating the interactions of
the lightest hadrons, the pseudoscalar octet, consisting of the π, K, K and η.

The reason that the pseudoscalar octet mesons are lighter is because they are the pseudo-
Goldstone bosons (PGBs) that arise from the spontaneous breaking of an approximate
symmetry in QCD.

Consider the QCD Lagrangian, keeping only the three lightest quarks, u, d and s:

L =
3∑

i=1

(
qii /Dqi − miqiqi

)
−

1

2
TrGµνGµν , (50)

where Dµ = ∂µ + igAµ is the covariant derivative, Aµ = Aa
µTa are the eight gluon fields

with Ta being SU(3) generators in the 3 representation, and Gµν being the gluon field
strength. Note that if I write the kinetic term in terms of right-handed and left-handed
quarks, projected out by (1 ± γ5)/2 respectively, then the kinetic term may be written as

∑

i

qii /Dqi =
∑

i

(
qLii /DqLi + qRii /DqRi

)
. (51)

This term by itself evidently respects a U(3)L ×U(3)R symmetry, where I rotate the three
flavors of left-handed and right-handed quarks by independent unitary matrices. One com-
bination of these transformations, the U(1)A transformation where qi → eiαγ5qi, is in fact
not a symmetry of the quantum theory, due to anomalies; it is a symmetry of the action but
not of the measure of the path integral. This leaves us with a U(1)V × SU(3)L × SU(3)R
symmetry. The U(1)V is just baryon number, under which both left- and right-handed
quarks of all flavors pick up a common phase. The remaining SU(3)L × SU(3)R symme-
try, under which qLi → LijqLj and qRj → RijqRj, where R and L are independent SU(3)
matrices, is called “chiral symmetry”.

SU(3)L × SU(3)R is not an exact symmetry of QCD, however. The quark mass terms
may be written as

∑

i

miqiqi =
∑

i,j

qRiMijqLj + h.c. , M =




mu

md

ms



 , (52)

where the quark masses mi are called “current masses”, not to be confused with the much
bigger constituent quark masses in the quark model. Since the mass term couples left- and
right-handed quarks, it is not invariant under the full chiral symmetry. Several observations:

29

LQCD = −
1

2
tr(GµνG

µν) + qMq

Gµν = ∂µAν − ∂νAµ + igS [Aµ, Aν ]

M = iγµ∂µ − gSγµAµ − Mq q = (u, d, s, c, b, t)T

LQCD ∼

g
S

2 g
S

g
S
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ππ-MACHIRAL AND CONTINUUM EXTRAPOLATION: Mixed-action χ-PT at one loop
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Chiral and continuum extrapolation
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Chiral and continuum extrapolation
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• Contains all O(m2
πb2) and O(b4) lattice artifacts.

• mπ and fπ are the lattice-physical parameters.

• Many sources of systematic error.
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π+ π+

π+ π+

π+

FIG. 2: Example quark flow for a one-loop t-channel graph. This diagram illustrates the presence

of meson loops composed of purely valence-valence mesons which are not canceled by valence-ghost

loops. Different colors (shades of grey) represent different quark flavors.

the quark level [51, 55]. Third, there are additional terms in the NLO Lagrangian which

arise from partial quenching [52], and lattice spacing effects [10, 38].

At the level of quark flow, there are diagrams such as Figure 2, which route the valence

quarks through the diagram in a way which has no ghostly counterpart. Consequently,

the ghosts do not exactly cancel the valence quarks in loops. Of course, this is simply a

reflection of the fact that the initial and final states — valence pions — are themselves

not symmetric under the interchange of ghost and valence quarks, and therefore the graded

symmetry between the valence and ghost pions has already been violated. This is well known

in quenched and partially quenched heavy baryon χPT [71, 72, 73]. This fact also partly

explains the success of quenched ππ scattering in the I = 2 channel [30, 31]; quenching does

not eliminate all loop graphs like it does in many other processes, and in particular, the

s-channel diagram is not modified by (partial) quenching effects. As a consequence, it is

necessary to compute all the graphs contributing to this process in order to determine the

scattering amplitude.

Quark level disconnected (hairpin) diagrams lead to higher order poles in the propagator

of any particle which has the quantum numbers of the vacuum [51, 55]. In the isospin limit of

the Nf = 2 partially quenched theory, conservation of isospin prevents the π0 from suffering

any hairpin effects. Hence only the η̄ acquires a disconnected propagator. Moreover, in the

m0 → ∞ limit, the η̄ propagator (given for a general PQ theory in Eq. (23)) is given by the

14
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Systematic Errors

• Higher-order effects in MAχPT:

O(m4
πb2) ∼

2πm4
π

(4πfπ)4
b2∆I

(4πfπ)2
< 1%

• Finite-volume effects: ∼ 4% at lightest mass.

• Residual chiral symmetry breaking:

8πm4
π

(4πfπ)4
mres

ml
∼ 3%

• Range corrections:

(mπaI=2
ππ )2p2

2m2
π

∼ 1%

• Isospin violation: Only issue if compare to experiment!
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Figure 7: Present constraints on threshold s-wave ππ scattering. Noteworthy in the left
panel are the red ellipse from the Roy equation analysis and the grey band from the direct
Lattice QCD calculation of the π+π+ scattering length, as discussed in the text. The right
panel shows the π+π+ scattering length results only.

There is little or no signal-to-noise problem in such calculations and therefore highly accurate Lattice
QCD calculations can be performed with moderate resources. Moreover, the EFTs which describe the
low-energy interactions of pions and kaons, including lattice-spacing and finite-volume effects, have been
developed to non-trivial orders in the chiral expansion.

The I = 2 pion-pion (π+π+) scattering length serves as a benchmark calculation with an accuracy
that can only be aspired to at present for other systems. Furthermore, due to the chiral symmetry of
QCD, ππ scattering at low energies is the simplest and best-understood of the hadron-hadron scattering
processes. The scattering lengths for ππ scattering in the s-wave are uniquely predicted at LO in χ-
PT [80]:

mπa
I=0
ππ = 0.1588 ; mπa

I=2
ππ = −0.04537 , (39)

when mπ is set equal to the charged pion mass. While experiments do not directly provide stringent
constraints on the scattering lengths, a determination of s-wave ππ scattering lengths using the Roy
equations has reached a remarkable level of precision [81, 82]:

mπa
I=0
ππ = 0.220± 0.005 ; mπa

I=2
ππ = −0.0444± 0.0010 . (40)

The Roy equations [83] use dispersion theory to relate scattering data at high energies to the scattering
amplitude near threshold. At present, Lattice QCD can compute ππ scattering only in the I = 2 channel
with precision as the I = 0 channel contains disconnected diagrams which require large computational
resources. It is of great interest to compare the precise Roy equation predictions with Lattice QCD
calculations. Figure 7 summarizes theoretical and experimental constraints on the s-wave ππ scattering
lengths [82]. It is clearly a strong-interaction process where theory has somewhat out-paced the very-
challenging experimental measurements.

The only existing nf = 2 + 1 Lattice QCD prediction of the I = 2 ππ scattering length involves a
mixed-action Lattice QCD scheme of domain-wall valence quarks on a rooted staggered sea. Details of
the lattice calculation can be found in Ref. [84]. The scattering length was computed at pion masses,
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EFT works 
too well!!


