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Organization

• Lecture 1:         Basic technology 

• Lecture II:         Non-Relativistic EFT

• Lecture III:        NR EFT: applications

• Lecture IV:                     primerχ− PT



Lecture I:   Basics

• Why we can calculate

• What EFT is

• Scaling/dimensional analysis

• Quantum corrections

• Matching



Physicists choose to study problems with widely separated scales

Why physicists can calculate

Because physicists choose to study problems with widely separated scales
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Consider a physical system with multiple scales

Arrange the various scales into two groups such that:

low −momentum scales ≤ p

high −momentum scales ≥ Λ

p! Λ −→ Effective Field Theory

include low-momentum d.o.f.!
omit high-momentum d.o.f.!
systematically improve description in: !

( p

Λ

)n



Utility of EFT?

• Better understand problems with many length 
scales. (e.g. nuclear physics, atomic physics)

• Compute low-energy scattering without knowledge of 
short distance physics. (e.g. the Standard Model)

• Develop low-energy theory with non-perturbative full 
theory. (e.g. chiral perturbation theory)



Consider a system with N scalar fields

φ,Φ1,Φ2, . . .ΦN−1

If mΦi ≥ Λ

∫
DφDΦ1 . . . DΦN−1e

−S =
∫

Dφ e−SEFT

High-momentum d.o.f. are integrated out

SEFT =
∫

d4xLEFT

non-local!



LEFT =
1
2
(∂µφ)2 +

1
2
c−2Λ2φ2 +

λ

4!
φ4 +

∑

n

(
cn

Λ2n
φ4+2n +

dn

Λ2n
(∂µφ)2φ2+2n + . . .

)

Dimensional analysis:

! = 1 [x] = −1 [t] = −1−→

[
∫

ddxLEFT] = 0 [φ] = d/2 − 1−→

φ→ −φConstrained by Lorentz invariance ... and 

c−2, λ, cn, dn ! 1
!
! Assume
! ∞ number of operators!



Which operators are most important?

φξ(x) = φ(ξx) ∼ eikξx

ξ → 0 −→ kξ → 0 infrared configurations

SEFT (φ(ξx); c−2, λ, cn, dn, . . .) = SEFT

(
ξ−1φ(x); ξ−2c−2, λ, ξ2ncn, ξ2ndn, . . .

)

φ→ ξ−1φ , c−2 → ξ−2c−2 , λ→ λ , cn → ξ2ncn , dn → ξ2ndn

Scaling to the infrared:

relevant
marginal
irrelevant

λ
c−2

cn , dn , . . .



In classical, relativistic EFT:

scaling dim  =  mass dim

[φ] = 1 , [c−2] = 2 , [λ] = 0 , [cn] = [dn] = −2n

How do quantum effects alter scaling?

Dominant effect from lowest dimensions!

Operators renormalize each other via loops!



∆λ ∼ ∼ c1

Λ2

∫
d4q

(2π)4
1

q2 −m2
φ

∼ c1

(4π)2

∆c1 ∼ ∼ c1 λ

∫
d4q

(2π)4
1

(
q2 −m2

φ

)2 ∼
c1 λ

(4π)2
log Λ

These shifts are perturbative by assumption!



+∆c−2 ∼ ∼
(

λ

(4π)2
+

c1

(4π)4
+ . . .

)
+...

requires fine tuning!mφ ! Λ

Fermions do not have this problem!  Chiral symmetry

Hierarchy/naturalness problem!

(We will postpone discussion of logarithms till later.)



Blue light scatters more strongly from atoms in the atmosphere than red light!



EFT

• Identify low-energy d.o.f

• Identify the symmetries

• Construct most general EFT 

• Determine power counting

• Choose desired accuracy

• Determine parameters (matching)



Consider interactions of photons with neutral atoms

Physical scales

∆E

a−1
0

MA

Photon energy:

Atom mass:

Atom size:

Atom level spacing:

ω

ω ! ∆E ! a−1
0 !MA



d.o.f ?

Aµ

φv

creates and destroys photon

destroys atom with velocity

φ†
v creates atom with velocity

Constrained by Lorentz and gauge invariance

Building blocks:

vµFµνφ†
vφv∂µ

vµ = (1, 0, 0, 0)

vµ = (1, 0, 0, 0)



L0 = φ†
vivµ∂µφv −

1
4
FµνFµν

Atom e.o.m: ∂t φv = 0 ⇒ E = 0

LEFT = c1φ
†
vφvFµνFµν + c2φ

†
vφvvαFαµvβF βµ + c3φ

†
vφv(vα∂α)FµνFµν + . . .

∞ number of operators !  need    power-counting

[Fµν ] = 2 , [φv] =
3
2

=⇒ [c1] = [c2] = −3 , [c3] = −4

Dominant effect from lowest dimensions!



Dimensions must be made from high-energy scales:

Scattering with

∆E , a−1
0

ω ! ∆E , a−1
0 ~ classical

LEFT = a3
0

(
a1φ

†
vφvFµνFµν + a2φ

†
vφvvαFαµvβF βµ

)
+ . . .

|A|2 ∼ a6
0

[σ] = −2

Scattering amplitude: 

Cross-section:



σ (ω) ∝ ω4 a6
0

(
1 + O

( ω

∆E

))

To calculate the coefficients must match the full theory to the EFT

(See Jackson, Classical E and M)



Let’s consider another example 
where matching is more illuminating:

Euler-He!enberg EFT



Consider photon interactions when ω ! me

Physical scales

Photon energy: ω

electron mass: me

d.o.f ?

Aµ creates and destroys photon

Constrained by Lorentz and gauge invariance
+ C and P



Building blocks:

Fµν∂µ

LEFT = −1
4
FµνFµν +

a

m4
e

(FµνFµν)2 +
b

m4
e

FµνFνσFσρFρµ +O(F 6/m8
e)

Don’t need to know anything about QED!

[σ] = −2

Scattering amplitude: 

Cross-section:

ALO (γγ → γγ) ∼ α2 ω4

m4
e



Matching to QED:

a = −α2

36
, b =

7α2

90

where ≡ ∂µ∂µ. This new term is just the Uehling interaction modifying the
photon propagator at low energies [4]. To lowest order in the fine structure constant
α = e2/4π the new coupling constant is CU = α/60π resulting from the Feynman
diagram in Figure 1.

However, in the absence of matter this new term will not contribute to any
physics. This is most easily seen by using the equation of motion for the free
field which is simply Fµν = 0 and makes the Uehling term go away. Higher order
operators in the effective Lagrangian will then contribute instead. Their coefficients
must be found by matching to the underlying theory which is here QED. This is
equivalent to integrating out the electron field in the Lagrangian [5]. The first
non-trivial photon interaction is obtained with dimension eight,

LEH = −
1

4
F 2

µν +
α2

90m4

[

(FµνF
µν)2 +

7

4
(FµνF̃

µν)2

]

(2)

where F̃µν = 1

2
εµνρσF ρσ. This is the Euler-Heisenberg Lagrangian [6] giving a non-

linear interaction between photons. At the microscopic scale it is caused by the

FIGURE 2. The Euler-Heisenberg interaction between four photons.

coupling of the four photons to a virtual electron loop as shown in Figure 2. Higher
order terms in the expansion will represent interactions between more photons.

We will here mention just two applications of this effective Lagrangian. It was
already used by Euler in 1936 to derive the elastic photon-photon cross section at
the tree level. Even if it represents a non-renormalizable theory, Halter [7] showed
that a finite result for the one-loop correction to the scattering amplitude can
be calculated from the diagram in Figure 3 and its crossed versions. Just from
dimensional arguments we know that the correction must be order of magnitude
α2(ω/m)4 smaller than the tree-level amplitude where ω is the photon energy.
However, this is not the lowest radiative correction to the Euler cross section. If
the effective Lagrangian (2) is derived from QED more accurately, i.e. to two-loop
order, the four-photon couplings will be modified by terms of order α. These have
been calculated by Ritus [8],

(FF )2 →
(

1 +
40

9

α

π

)

(FF )2 (3)

(FF̃ )2 →
(

1 +
1315

252

α

π

)

(FF̃ )2
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However, this is not the lowest radiative correction to the Euler cross section. If
the effective Lagrangian (2) is derived from QED more accurately, i.e. to two-loop
order, the four-photon couplings will be modified by terms of order α. These have
been calculated by Ritus [8],

(FF )2 →
(

1 +
40

9

α

π

)

(FF )2 (3)

(FF̃ )2 →
(

1 +
1315

252

α

π

)

(FF̃ )2

=

σ(γγ → γγ) ∼ ω6

m8
e

σ(γγ → γγ) =
973 α4

5(45)2π
ω6

m8
e

+ O(ω8)



What about corrections to LO?

FIGURES

FIG. 1. The exact cross section for γγ → γγ is shown.

FIG. 2. One-loop diagrams for the s, t and u channel two photon exchanges are shown.
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∼
∫

d4q

(2π)4
1

q2(k + q)2
∼ log

(
Λ2

−k2

)



σ(γγ → γγ) =
α4

(45)2π
ω6

m8
e

(
973
5

+
128
3

ω2

m2
e

+ O(ω4)
)

ANLO (γγ → γγ) ∼ α4 ω8

m8
e

log
(

Λ
µ

)
+ . . .

L′
EFT =

1
m8

e

[
a1 (∂αFµν) (∂αFµν) (∂βFλρ)

(
∂βFλρ

)

+a2 (∂αFµν)
(
∂βFµν

)
(∂αFλρ)

(
∂βFλρ

)
+ a3 (∂α∂βFµλ) Fλν (∂µ∂νFαρ) F ρβ

]

Matching to QED:



Lecture II:   NR systems

• Non-Relativistic scaling

• NR effective Lagrangians

• Scattering theory generalities

• Bosons in flatland



LEFT =
1
2
(∂µφ)2 +

1
2
c−2Λ2φ2 +

λ

4!
φ4 +

∑

n

(
cn

Λ2n
φ4+2n +

dn

Λ2n
(∂µφ)2φ2+2n + . . .

)

Dimensional analysis:

! = 1 [x] = −1 [t] = −1−→

[
∫

ddxLEFT] = 0 [φ] = d/2 − 1−→

Recall relativistic scaling:

scaling dim  =  mass dim

[φ] = 1 , [c−2] = 2 , [λ] = 0 , [cn] = [dn] = −2n



LEFT =
1
2

(
φ̇2 − (∇φ)2 −m2φ2

)
− λ

4!
φ4 + . . .

φ ∼ a e−iEt + a† eiEt

For non-relativistic particle:

E ! mwith

Near cancellation in kinetic term!

Define: φ(x, t) =
1√
2m

(
e−imtψ(x, t) + eimtψ∗(x, t)

)



LEFT = ψ∗
(

i∂t +
∇2

2m

)
ψ − λ

8m2
(ψ∗ψ)2 + . . .

[x] = −1 , [t] = −2 , [ψ] =
3
2
, [λ] = −1 .

Time and space scale differently!

Free e.o.m:
(

i∂t +
∇2

2m

)
ψ = 0

ψ(x, t) ∝ e−iEt+ipx

E =
p2

2m



Let’s generalize our notation a bit: 
non-relativistic fermions and bosons

creates particle

destroys particleψ(x, t)

ψ†(x, t)

The quantum field ψ can represent a nucleon or an atom

Free theory:

L =
1
2
[
ψ†i

d

dt
ψ + h.c.

]
− H

H =
1

2m
∇ψ† ·∇ψ



EFT

(I)     Identify low-energy d.o.f

(II)    Identify the symmetries

(III)   Construct most general EFT 

(IV)   Determine power counting

(V)   Determine parameters (matching)



atoms or nucleons

(II) Identify the symmetries

ψ → eiθψConservation of particles:

Galilean invariance:

(I) Identify the low-energy d.o.f.

ψ(x, t) → eim(v·x− 1
2 v2t)ψ(x− vt)

same number of andψ ψ†

(
i∂t +

∇2

2m

)
ψ

(
i∂t +

∇2

4m

)
ψ1ψ2

ψ1ψ2

ψtransforms like

transform like
ψ1

↔
∇ ψ2 = ψ1

→
∇ ψ2 − ψ2

→
∇ ψ1

}



Also have rotational invariance, P and T

(III) Construct most general EFT

LEFT = ψ†
(

i∂t +
∇2

2m
+ µ

)
ψ +

∑

n

cnOn

d = 6 :
(
ψ†ψ

)2

d = 8 : ψ†∇2ψψ†ψ , . . .
...

LEFT can be simplified by omitting total derivatives, using 
e.o.m and by performing field redefinitions:

ψ −→ ψ + η T (ψ,ψ†)



crst ∼
1
m

(
1
Λ

)2r+s+3t−5

Operator suppression:

(IV)  Determine power counting

Orst ∼ (im∂t)
r∇sψ† tψt ∼ p2r+s+3t

( p

Λ

)2r+s+3t+...

Note:  this power counting assumes that the coefficients in 
the EFT are of natural size!



What is relation between the EFT and the Schrӧdinger equation?

How do quantum effects alter our scaling arguments?

Let’s consider some EFT examples:

★  Bosons in two spatial dimensions
★  Fermions in three spatial dimensions



Aside:



Ultra-cold atoms:  At nano-K temperatures, have a non-relativistic 
few-body system whose inter-particle interaction can be tuned.

Aside:



Ultra-cold atoms:  At nano-K temperatures, have a non-relativistic 
few-body system whose inter-particle interaction can be tuned.

It gets better....  consider atoms tightly confined in the z 
direction:

VH(z) =
1
4
mω2

0z2

Can continuously move from 3 to 2 spatial dimensions!

!0 =
√

!
mω0

Aside:



Cold Atoms  =  Theoretical playground!



Assume: finite range interaction in d space-time dimensions

on several interesting properties. In an appendix we make use of some well-known exact
results for even-dimensional lattice sums to derive some closed-form expressions that are
useful for the case of two spatial dimensions.

II. SCATTERING IN THE CONTINUUM

A. Generalities

Here we will review some basic EFT technology which will allow us to obtain a general
expression for the isotropic scattering phase shift in any number of dimensions. If one is
interested in low-energy scattering, an arbitrary interaction potential may be replaced by
an infinite tower of contact operators, with coefficients to be determined via experiment.
At low energies only a few of the contact operators will be important. This is the essence
of effective field theory (EFT). The EFT of ψ bosons, destroyed by the field operator ψ,
interacting through contact interactions has the following Lagrangian:

L = ψ†

(

i∂t +
∇2

2M

)

ψ −
C0

4
(ψ†ψ)2 −

C2

8
∇(ψ†ψ)∇(ψ†ψ) + ... (1)

This lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. It
is valid in any number of spacetime dimensions, d. The dimensions of the boson field and
of the operator coefficients change with spacetime dimensions: i.e. [ψ] = (d − 1)/2 and
[C2n] = 2 − d − 2n. The sum of Feynman diagrams computed in this theory gives the
amplitude:

A(p) = −

∑

C2n p2n

1 − 1
2I0(p)

∑

C2n p2n
, (2)

where

I0(p) = M
(µ

2

)ε
∫

dD−1q

(2π)D−1

1

p2 − q2 + iδ
, (3)

and it is understood that the ultraviolet divergences in the EFT are regulated using di-
mensional regularization (DR). In eq. (3), µ and D are the DR scale and dimensionality,
respectively, and ε ≡ d − D. A useful integral is:

In(p) = M
(µ

2

)ε
∫

dD−1q

(2π)D−1
q2n

(

1

p2 − q2 + iδ

)

= −Mp2n(−p2 − iδ)(D−3)/2Γ

(

3 − D

2

)

(µ/2)ε

(4π)(D−1)/2
. (4)

In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate. However it is a convenient choice if no assumption is made
about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply

4

Interacting Bosons

− D0

36
(
ψ†ψ

)3

FIG. 2: Feynman diagram that gives the leading contribution to the three-body scattering amplitude.

B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (10), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p

2 + O(p4) (13)

where

α2(µ) =
MC0(µ)

8
; σ2 =

8C2(µ)

MC2
0 (µ)

. (14)

Note that α2 is a dimensionless coupling, and
√

|σ2| is the effective range. Neglecting
range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2
]

, (15)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 6 and 13.

The leading beta function in the EFT is

µ
d

dµ
C0(µ) =

M

4π
C2

0 (µ) , (16)

which may be integrated to give the familiar renormalization group evolution equation

α2(µ) =
α2(ν)

1− 2
πα2(ν) log

(

µ
ν

) . (17)

7
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α2 ≡ MC0

8

[x] = −1 , [t] = −2 , [ψ] = (d− 1)/2, [C2n] = 3− d− 2n , [D0] = 4− 2d

LO marginal in d = 3 “flatland”

rescale:



k1

k2

k′
1

k′
2

(A2)tree = = −C0 +
C2

4
[

(k1 − k′
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FIG. 1: Feynman diagrams that give the exact two-body scattering amplitude. The oval blob repre-

sents the all-orders interaction derived from the Lagrangian.

This Lagrangian, constrained by Galilean invariance, parity and time-reversal invariance,
describes the low-energy interactions of bosons via an arbitrary finite-range potential. In
principle, it is valid in any number of spacetime dimensions, d. The mass dimensions of the
boson field and of the operator coefficients change with spacetime dimensions: i.e. [ψ] =
(d−1)/2, [C2n] = 2−d−2n and [D0] = 3−2d. While our focus in this paper is on d = 3, in
our general discussion of two- and three-body interactions, we will keep d arbitrary as this
will allow the reader to check our results against the well-known cases with d = 2 and d = 4.
Throughout we use units with ! = 1, however we will keep the boson mass, M , explicit.

Consider 2 → 2 scattering, with incoming momenta labelled p1,p2 and outgoing momenta
labelled p′

1,p
′
2. In the center-of-mass frame, p = p1 = −p2 , and the sum of Feynman

diagrams, shown in fig. 1, computed in the EFT gives the two-body scattering amplitude [22–
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and it is understood that the ultraviolet divergences in the EFT are regulated using di-
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In what follows we will define the EFT coefficients in DR with MS. This choice is by no
means generally appropriate [23, 24]. However it is a convenient choice if no assumption is
made about the relative size of the renormalized EFT coefficients.

Now we should relate the scattering amplitude in the EFT, A2(p), whose normalization is
conventional and fixed to the Feynman diagram expansion, to the S-matrix. We will simply
assume that the S-matrix element for isotropic (s-wave) scattering exists in an arbitrary
number of spacetime dimensions. We then have generally

e2iδ(p) = 1 + i N (p) A2(p) , (5)
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where N (p) is a normalization factor that depends on d and is fixed by unitarity. Indeed
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Bound states are present if there are poles on the positive imaginary momentum axis. That
is if cot δ(iγ) = i with binding momentum γ > 0. These expressions are valid for any d.
In order to evaluate I0(p) it is convenient to consider even and odd spacetime dimensions
separately. For d even the Gamma function has no poles and one finds
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where ψ0(n) is the digamma function. Here there is a single logarithmic divergence, hidden
in the 1/ε pole. Hence in our scheme, at least one EFT coefficient runs with the scale µ.
With these results in hand it is now straightforward to give the general expression for the
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where µ is defined by equating the logarithm in eq. (10) with the content of the square
brackets in eq. (9). Note that this is an unrenormalized equation; the C2n coefficients are
bare parameters and there is a logarithmic divergence for odd spacetime dimensions. One
must expand the right hand side of this equation for small momenta in order to renormalize 2.
It is noteworthy that the effective field theory seems not to exist for d > 3 and odd as the
divergence is generated at leading order and yet requires a nominally suppressed operator
for renormalization.

The leading three-body diagram in the momentum expansion is shown in fig. 2, and the
three-body scattering amplitude is given by
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2 In the case of three spatial dimensions eq. (10) yields the familiar effective range expansion,
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FIG. 2: Feynman diagram that gives the leading contribution to the three-body scattering amplitude.

B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (10), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p

2 + O(p4) (13)

where

α2(µ) =
MC0(µ)

8
; σ2 =

8C2(µ)

MC2
0 (µ)

. (14)

Note that α2 is a dimensionless coupling, and
√

|σ2| is the effective range. Neglecting
range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2
]

, (15)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 6 and 13.

The leading beta function in the EFT is

µ
d

dµ
C0(µ) =

M

4π
C2

0 (µ) , (16)

which may be integrated to give the familiar renormalization group evolution equation

α2(µ) =
α2(ν)

1− 2
πα2(ν) log

(

µ
ν

) . (17)
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is if cot δ(iγ) = i with binding momentum γ > 0. These expressions are valid for any d.
In order to evaluate I0(p) it is convenient to consider even and odd spacetime dimensions
separately. For d even the Gamma function has no poles and one finds
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(
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where ψ0(n) is the digamma function. Here there is a single logarithmic divergence, hidden
in the 1/ε pole. Hence in our scheme, at least one EFT coefficient runs with the scale µ.
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where µ is defined by equating the logarithm in eq. (10) with the content of the square
brackets in eq. (9). Note that this is an unrenormalized equation; the C2n coefficients are
bare parameters and there is a logarithmic divergence for odd spacetime dimensions. One
must expand the right hand side of this equation for small momenta in order to renormalize 2.
It is noteworthy that the effective field theory seems not to exist for d > 3 and odd as the
divergence is generated at leading order and yet requires a nominally suppressed operator
for renormalization.

The leading three-body diagram in the momentum expansion is shown in fig. 2, and the
three-body scattering amplitude is given by

A3 = − D0 . (12)

2 In the case of three spatial dimensions eq. (10) yields the familiar effective range expansion,

p cot δ(p) = − 1

a3
+

1

2
r3 p

2 + O(p4) , (11)

with a3 = MC0/(8π) and r3 = 16πC2/(MC2
0 ).
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B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (10), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p

2 + O(p4) (13)

where

α2(µ) =
MC0(µ)
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; σ2 =

8C2(µ)

MC2
0 (µ)

. (14)

Note that α2 is a dimensionless coupling, and
√

|σ2| is the effective range. Neglecting
range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2
]

, (15)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 6 and 13.

The leading beta function in the EFT is

µ
d

dµ
C0(µ) =

M

4π
C2

0 (µ) , (16)

which may be integrated to give the familiar renormalization group evolution equation

α2(µ) =
α2(ν)

1− 2
πα2(ν) log

(

µ
ν

) . (17)
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Asymptotic freedom! Landau pole!

Repulsive:Attractive:It is clear from eq. (17) that the attractive case, α2(µ) = −|α2(µ)|, corresponds to an
asymptotically free coupling, while the repulsive case, α2(µ) = +|α2(µ)|, has a Landau pole
and the coupling grows weaker in the infrared. We will focus largely on the latter case in
what follows 3. Note that the position of the “bound state” in the repulsive case coincides
with the position of the Landau pole, which sets the cutoff scale of the EFT. This state is
therefore unphysical.

Below we will also make use of a more conventional4 parametrization of the phase shift:

cot δ(p) =
1

π
log

(

p2a22
)

+ σ2 p
2 + O(p4) . (18)

Here a2 is the scattering length in two spatial dimensions. By matching with eq. 13, one
finds a−1

2 = µ exp(π/2α2(µ)), which in the repulsive case is the position of the Landau pole.
Hence, in the repulsive case, a−1

2 is the momentum cutoff scale. Therefore, from the point
of view of the EFT, a2 is a most unsuitable parameter for describing low-energy physics. Of
course, while the parameter a2 is expected to be very small as compared to physical scales,
its effect is enhanced as it appears in the argument of the logarithm.

III. SCATTERING IN A CONFINED GEOMETRY

A. Eigenvalue equation

With the scattering theory that we have developed we may now find the eigenvalue equation
in a confined geometry with periodic boundary conditions. Specifically, we will consider
scattering on what is topologically the (d− 1)-dimensional torus, T d−1 = S1

(1) × S1
(2) × · · ·×

S1
(d−1). In the confined geometry, all bound and scattering states appear as poles of the S-

matrix, or scattering amplitude, A2(p). Hence, from eq. (2) we have the eigenvalue equation
A2(p)−1 = 0, or

1
∑

C2n p2n
= IL0 (p) , IL0 (p) =

M

2

1

Ld−1

Λ
∑

k

1

p2 − k2
, (19)

where we have chosen to define the sum with a sharp cutoff (d = 2 is ultraviolet finite). The
sum is over k = 2πn/L where n ∈ Zd−1 = (n1, n2, . . . , nd−1) takes all integer values. It is
therefore convenient to write

IL0 (p) =
M

8π2
L3−d

Λn
∑

n∈Zd−1

1

q2 − n2
, (20)

where q ≡ pL/2π and therefore Λ = 2πΛn/L. As the EFT coefficients are defined in DR,
we can write the eigenvalue equation as

1
∑

C2n p2n
− Re(I{DR}

0 (p)) = IL0 (p) − Re(I{Λ}0 (p)) . (21)

3 For a recent discussion of the implications of scale invariance for many-boson systems in the case of an

attractive coupling, see Ref. [27].
4 With a2 = aeγ/2 and σ2 = a2/2π, this parametrization coincides with a hard-disk potential of radius

a [18]. As we will discuss below, there appears to be some confusion in the literature as regards the

distinction between a2 and a.
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Weirdness of two spatial dimensions:

FIG. 2: Feynman diagram that gives the leading contribution to the three-body scattering amplitude.

B. Two spatial dimensions

In this section we consider the case d = 3 in some detail. This case is particularly interesting
because of its analogy with renormalizable quantum field theories, and QCD in particular [25,
26]. From our general formula, eq. (9), we find

cot δ(p) =
1

π
log

(

p2

µ2

)

− 1

α2(µ)
+ σ2 p2 + O(p4) (12)

where

α2(µ) =
MC0(µ)

8
; σ2 =

8C2(µ)

MC2
0 (µ)

. (13)

Note that α2 is a dimensionless coupling, and
√
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range corrections, for α2(µ) of either sign, there is a bound state with binding momentum
γ = µ exp(π/2α2(µ)). In essence, this occurs because, regardless of the sign of the delta-
function interaction, quantum effects generate an attractive logarithmic contribution to the
effective potential which dominates at long distances. However, as we will see below, in the
repulsive case, this pole is not physical.

Many interesting properties in two spatial dimensions may be traced to scale invariance.
Keeping only the leading EFT operator, the Hamiltonian may be written as

H =

∫

d2x

[

1
2∇ψ†∇ψ + 2α2(ψ

†ψ)2

]

, (14)

where the field and spatial coordinates have been rescaled by ψ → M1/2ψ; 'x → M−1/2'x. It
is clear that classically there is no dimensionful parameter and indeed this Hamiltonian has
a non-relativistic conformal invariance (Schrödinger invariance) [26]. This conformal invari-
ance is broken logarithmically by quantum effects. Perhaps the most dramatic signature of
this breaking of scale invariance is the vanishing of the scattering amplitude at zero energy,
which follows from eqs. 5 and 12.

The leading beta function in the EFT is
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cutoff of EFT!

where N (p) is a normalization factor that depends on d and is fixed by unitarity. Indeed
combining eq. (2) and eq. (5) gives N (p) = −2Im(I0(p)) and one can parametrize the
scattering amplitude by

A2(p) =
−1

Im(I0(p))
[

cot δ(p)− i
] , (6)

with

cot δ(p) =
1

Im(I0(p))

[

1
∑

C2n p2n
− Re(I0(p))

]

. (7)

Bound states are present if there are poles on the positive imaginary momentum axis. That
is if cot δ(iγ) = i with binding momentum γ > 0. These expressions are valid for any d.
In order to evaluate I0(p) it is convenient to consider even and odd spacetime dimensions
separately. For d even the Gamma function has no poles and one finds

I0(p) = − M

2(4π)(d−1)/2

πi pd−3

Γ
(

d−1
2

) . (8)

As there is no divergence, the MS EFT coefficients do not run with µ in even spacetime
dimensions. Hence the bare parameters are the renormalized parameters. For d odd, one
finds

I0(p) =
M

2(4π)(d−1)/2

pd−3

Γ
(

d−1
2

)

[

log

(

−p2

µ2

)

− ψ0

(

d− 1

2

)

− log π − 2

ε

]

, (9)

where ψ0(n) is the digamma function. Here there is a single logarithmic divergence, hidden
in the 1/ε pole. Hence in our scheme, at least one EFT coefficient runs with the scale µ.
With these results in hand it is now straightforward to give the general expression for the
isotropic phase shift in d spacetime dimensions:

pd−3 cot δ(p) = −(4π)(d−1)/2

πM
Γ

(

d− 1

2

)

2
∑

C2n p2n
+ (1− (−1)d)

pd−3

2π
log

(

p2

µ2

)

, (10)

where µ is defined by equating the logarithm in eq. (10) with the content of the square
brackets in eq. (9). Note that this is an unrenormalized equation; the C2n coefficients are
bare parameters and there is a logarithmic divergence for odd spacetime dimensions. One
must expand the right hand side of this equation for small momenta in order to renormalize 2.
It is noteworthy that the effective field theory seems not to exist for d > 3 and odd as the
divergence is generated at leading order and yet requires a nominally suppressed operator
for renormalization.

The leading three-body diagram in the momentum expansion is shown in fig. 2, and the
three-body scattering amplitude is given by

A3 = − D0 . (12)

2 In the case of three spatial dimensions eq. (10) yields the familiar effective range expansion,

p cot δ(p) = − 1

a3
+

1

2
r3 p

2 + O(p4) , (11)

with a3 = MC0/(8π) and r3 = 16πC2/(MC2
0 ).
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It is when considering marginal operators that quantum corrections to the scaling di-
mension are particularly dramatic, as they make the operator either become relevant (strong
in the IR, as in the case of the QCD coupling, or that of any nonabelian gauge theory with
not too many matter fields) or irrelevant (as is the case with QED, φ4 and Yukawa inter-
actions). Hopefully you have encountered the renormalization group and β functions in a
quantum field theory class; I will not review them here. However, I would like to demys-
tify asymptotic freedom a bit by showing how it occurs in a mundane quantum mechanics
problem, without the added complications inherent in a relativistic field theory.

Consider a particle in d spatial dimensions in a δd(r) potential with no angular mo-
mentum (for d > 1). In a second quantized language, a δ-function potential appears as

a (λ/8m2)
(
ψ†ψ

)2
interaction as in eq. (12). Generalizing yesterday’s scaling arguments

for arbitrary d one finds the scaling dimension of the interaction [
(
ψ†ψ

)2
] = (d − 2). This

means that the critical dimension is d = 2, and that the interaction is relevant in d = 1 and
irrelevant in d = 3.

Let’s see that directly from the Schrodinger equation:

−∇2Ψ − gδd(r)Ψ = 2MEΨ . (42)

On rescaling r, we know that ∇2 scales like 1/r2, while δd(r) scales like 1/rd, since∫
ddr δd(r) = 1. To better understand the meaning of scaling a δ-function, we replace

it by a square barrier of height V0 and radius r0, satisfying V0Sd(r0) = 1, where Sd(r0)
is the volume of a sphere of radius r0 in d dimensions. Since Sd(r0) ∝ rd

0 , so V0 ∝ 1/rd
0 .

For an attractive δ function potential, one has a square well, instead of a square barrier.
The finite size of r0 regulates the singular δ-function, and 1/r0 plays the role that our
momentum cutoff Λ played in prior discussion. Now take r0 → 0, varying V0 appropriately,
and compare the relative importance of the kinetic versus the potential potential energy in
the Schrödinger equation. Clearly d = 2 is special, for only in d = 2 do the kinetic and
potential terms in the Schrödinger equation scale the same way.

In d = 1, the kinetic term dominates for short wavelength, and so high energy scattering
will resemble a free theory (no potential); on the other hand, long distance physics is
dominated by the potential term, and for an attractive interaction we find a bound state
Ψ = exp(−g|x|/2) with binding energy g2/8M in the limit r0 → 0.

In d = 3, with the scaling law we chose for V0 we get nonsense if the interaction is
attractive! The potential well has depth V0 ∝ 1/r3

0 and so potential energy dominates at
short distance, and we get an infinite number of bound states. Quite appropriate for an
irrelevant operator: it is sensitive to short distance physics. In the second quantized form,
we can see that the energy is not bounded from below. This problem is not encountered
with a repulsive δ3(r) potential.

Since we will later be talking about an effective theory for nucleon-nucleon scattering
in d = 3, it is useful to point out that the d = 3 theory with an attractive interaction can
be forced to make sense by taking liberty with what we mean by a δ function interaction,
and by changing our scaling law for V0. In particular, if we require that be a bound state
at some fixed energy as we take r0 → 0, we find that we must take V0 to scale as 1/r2

0 ,
and not 1/r3

0 . This means we are replacing the gδ3(r) potential by a regulated potential
g′r0δ3

r0
(r). This is equivalent to saying that our “bare” coupling g′r0 goes to zero as we
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Regularization:

Schrӧdinger equation:

gδ2(r) → g/(πr2
0) Θ(r0 − r)

remove the regulator (that is, take r0 → 0) for fixed renormalized coupling g′, whose value
is determined by the renormalization condition that we find a bound state with a specified
energy.

The d = 2 case is particularly interesting we have seen that d = 2 is the critical
dimension for a δ-function potential. If we replace the gδ(2)(r) in eq. (42) by a 2d square
well of depth V0 = g/(πr2

0) and radius r0 and solve the Schrödinger equation for a bound
state with fixed binding energy E independent of r0 (our renormalization condition) we
find a solution in terms of Bessel functions which is nonsingular at the origin, bounded at
r = ∞ and continuous at r = r0 of the form

Ψ< = J0(pr) , Ψ> =
J0(pr0)K0(qr)

K0(qr0)
, p ≡

√
−2ME , q ≡

√
g/(πr2

0) − p2 , (43)

subject to the condition that the first derivative is continuous at r = r0:

Ψ′
<(r0) = Ψ′

>(r0) . (44)

Assuming that the coupling g is small, we can expand and solve the above continuity
equation to linear order in g, and then expand that solution for small r0. Doing this, I find

g =
2π

1
2 − γ − ln(pr0/2)

+ O(r0) =
2π

ln(1/r0Λ)
+ O(r0) , Λ ≡

p

2e1/2−γ
& 0.54 p (45)

where γ = 0.5772 . . . is the Euler γ-function. Evidently, our bare g has to vanish like an
inverse logarithm of r0 as r0 → 0. It also appears to blow up in the IR at r0 = 1/Λ, but
this behavior is not to be trusted since I employed perturbation theory to derive the result.
This behavior closely resembles that of the QCD coupling constant, when one fixes the mass
of some hadron, such as a glueball. The running QCD coupling vanishes like an inverse
logarithm at short distance (asymptotic freedom), with ΛQCD playing the role of Λ in the
above equation.

Note that if I replace r0 by 1/µ in eq. (45), then g(µ) obeys the equation

µ
dg

dµ
= −

g2

2π
(46)

which is the renormalization group equation for the running coupling constant in this the-
ory. The fact that the right hand side of the above equation is negative indicates asymptotic
freedom. Apparently if we had analyzed a repulsive interaction (g → −g), fixing something
physical, such as the scattering length, then the RG equation would have given an asymp-
totically unfree theory...the coupling would get stronger in the UV, and one would not be
able to take the r0 → 0 limit, as one would encounter a “Landau pole” as in QED — the
coupling g would become infinite at finite r0.

Hopefully these examples will convince you that the regularization, renormalization and
running couplings encountered in quantum field theory have to do with the singular nature
of local interactions, and have nothing to do with relativity, or the fact that relativistic
quantum theories are many-body theories.
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r0 → 1/µ g = −4α2

Recovers previous!



Quantum effects alter marginal operators!

Solving Schrӧdinger equation = Summing bubbles

Next we’ll consider power counting in NR systems


